\(A=\sqrt{-x^2+6x-9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

trả lời:

đkxđ:x>0

13 tháng 6 2018

ĐKXĐ : \(-x^2+6x-9\ge0\)

\(\Leftrightarrow\)\(-\left(-x^2+6x-9\right)\le0\)

\(\Leftrightarrow\)\(x^2-6x+9\le0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2\le0\)

Mà \(\left(x-3\right)\ge0\)

Suy ra : \(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Chưa học nên sai thì thôi nhé =.=" 

Chúc bạn học tốt ~ 

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

22 tháng 8 2021

\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)

\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)

\(c,\) th1 : \(M=\frac{1}{3x+1}\)  khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\) 

th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)

\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)

\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)

th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)

th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)

1. Cho biểu thức A= \(\sqrt{4-2x}\)a) Tìm điều kiện của x để biểu thức có nghĩa.b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)a) Tìm điều kiện của X để biểu thức P xác định..b) Tính giá trị của biểu thức khi x=4, x=100c) Tìm giá trị của x để P=1, P=7d) Tìm các số...
Đọc tiếp

1. Cho biểu thức A= \(\sqrt{4-2x}\)

a) Tìm điều kiện của x để biểu thức có nghĩa.

b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.

c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?

2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)

a) Tìm điều kiện của X để biểu thức P xác định..

b) Tính giá trị của biểu thức khi x=4, x=100

c) Tìm giá trị của x để P=1, P=7

d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.

3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)

a) Tìm điều kiện xác định của x để biểu thức Q được xác định.

b) Tính giá trị của biểu thức khi x=0,x=1,x=16.

c) Tìm giá trị của x để Q=1,Q=10.

d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.

Giải hộ với ạ! Gấp lắm T.T

4
2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

1 tháng 9 2021

xin lỗi bạn nhé mik lớp 7

5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3