Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a.
\(\dfrac{-3}{3-x}\ge0\Rightarrow3-x< 0\Rightarrow x>3\)
b.
\(x+\dfrac{1}{x}\ge0\Rightarrow\dfrac{x^2+1}{x}\ge0\Rightarrow x>0\)
1) Để biểu thức \(\dfrac{\sqrt{x+2}}{\sqrt{x-5}}\) có nghĩa thì \(\left\{{}\begin{matrix}x+2\ge0\\x-5>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-2\\x>5\end{matrix}\right.\)\(\Leftrightarrow x>5\)
2) Để biểu thức \(\sqrt{\dfrac{3x}{2}}\) có nghĩa thì \(\dfrac{3x}{2}\ge0\Leftrightarrow x\ge0\)
a: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>2-x>0
hay x<2
b: ĐKXĐ: \(\dfrac{3}{x^2-1}>=0\)
=>(x-1)(x+1)>0
=>x>1 hoặc x<-1
c: ĐKXĐ: \(x\in R\)
a: ĐKXĐ: x>=0
b: ĐKXĐ: x-1>0 và -(x2-x-6)>=0
=>x>1 và (x-3)(x+2)<=0
=>x>1 và -2<=x<=3
=>1<x<=3
a) Đkxđ: \(x\ge0\)
b) \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
c) Giả sử \(A\le1\Leftrightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\Leftrightarrow\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
\(\Leftrightarrow\sqrt{x}-x+\sqrt{x}-1\le0\Leftrightarrow-x+2\sqrt{x}-1\le0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\) (luôn đúng)
Vậy A \< 1 luôn đúng (đpcm)
ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)
Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)