Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DKXD\hept{\begin{cases}x\left(x^2-1\right)\le0\\x^2-1\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -1\\0\le x< 1\end{cases}}\)
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
ĐKXĐ : \(-x^2+6x-9\ge0\)
\(\Leftrightarrow\)\(-\left(-x^2+6x-9\right)\le0\)
\(\Leftrightarrow\)\(x^2-6x+9\le0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2\le0\)
Mà \(\left(x-3\right)\ge0\)
Suy ra : \(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Chưa học nên sai thì thôi nhé =.="
Chúc bạn học tốt ~
Để biểu thức \(\sqrt{2-3x}\) được XĐ ⇒ \(2-3x\) ≥ 0
⇔ \(-3x\) ≥ -2
⇔ \(x\) ≤ \(\dfrac{2}{3}\)
Vậy x ≤ \(\dfrac{2}{3}\) thì bt \(\sqrt{2-3x}\) được xác định