Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha
dễ quá
Chỉ cần mẫu nó khác 0 là đc
a, x § -2
b, x § 2
§ là khác nhé!!! :v
a) \(\sqrt{x+2}\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)
b) \(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\Leftrightarrow x^2-3\ne1\Leftrightarrow x^2\ne4\Leftrightarrow x\ne^+_-4\)
(chỗ này là bình phương 2 vế lên)
b) Để biểu thức \(\sqrt{\left(x^2+1\right)\left(2x+3\right)}\) có nghĩa thì \(\left(x^2+1\right)\cdot\left(2x+3\right)\ge0\)
\(\Leftrightarrow2x+3\ge0\)(Vì \(x^2+1\ge0\forall x\))
\(\Leftrightarrow2x\ge-3\)
hay \(x\ge-\frac{3}{2}\)
Vậy: Khi \(x\ge-\frac{3}{2}\) thì biểu thức \(\sqrt{\left(x^2+1\right)\left(2x+3\right)}\) có nghĩa
c) Ta có: \(x^2-3x+5\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}>0\forall x\)
hay \(x^2-3x+5>0\forall x\)
Vậy: \(\sqrt{x^2-3x+5}\) luôn xác định được \(\forall x\)
ĐK:\(x\ge\dfrac{3}{4}\)
giari các bước giúp mình với