Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos5x=-\sin4x\)
<=> \(\cos5x=\cos\left(4x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}5x=4x+\frac{\pi}{2}+k2\pi\\5x=-4x-\frac{\pi}{2}+k2\pi\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}}\)
Nghiệm âm lớn nhất: \(-\frac{\pi}{18}\)
Nghiệm dương nhỏ nhất: \(\frac{\pi}{2}\)
pt <=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x-\frac{\pi}{3}+\frac{\pi}{2}\right)\)
<=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x+\frac{\pi}{6}\right)\)
<=> \(\orbr{\begin{cases}5x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\5x+\frac{\pi}{3}=\pi-2x-\frac{\pi}{6}+k2\pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\end{cases}}\)
Trên \(\left[0,\pi\right]\)có các nghiệm:
\(\frac{11\pi}{18},\frac{\pi}{14},\frac{5\pi}{14},\frac{9\pi}{14},\frac{13\pi}{14}\)
tính tổng:...
Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):
- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm
- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm
- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm
- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm
- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm
Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:
\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:
- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)
- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)
- TH3: \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)
Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được
Em làm cách khác cơ.
Δ = (...)2 nên viết hẳn 2 nghiệm ra
rồi vẽ bảng biến thiên của y = sinx
Tìm điều kiện của m để phương trình \(2sinx+m=0\) có đúng 2 nghiệm thuộc đoạn \(\left[0;\pi\right]\)
1.
Từ đường tròn lượng giác ta thấy pt đã cho có nghiệm duy nhất thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{3}\right]\) khi và chỉ khi:
\(\left[{}\begin{matrix}2m=1\\0\le2m< \frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\frac{1}{2}\\0\le m< \frac{1}{4}\end{matrix}\right.\)
2.
\(\Leftrightarrow3x-\frac{\pi}{3}=x+\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=\frac{7\pi}{24}+\frac{k\pi}{2}\)
\(-\pi< \frac{7\pi}{24}+\frac{k\pi}{2}< \pi\Rightarrow-\frac{31}{12}< k< \frac{17}{12}\)
\(\Rightarrow k=\left\{-2;-1;0;1\right\}\) có 4 nghiệm
3.
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\) có 4 điểm biểu diễn
1.
\(cos2x-3cosx+2=0\)
\(\Leftrightarrow2cos^2x-3cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn
\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)
\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)
2.
\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)
Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)
Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)
TH1: \(m=2\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)
\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán
TH2: \(m=3\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)
\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán
TH3: \(m=1\)
\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
Vậy \(m=2;m=3\)
\(\Leftrightarrow2sin2x.cos2x-4cos2x-m\left(sin2x-2\right)=0\)
\(\Leftrightarrow2cos2x\left(sin2x-2\right)-m\left(sin2x-2\right)=0\)
\(\Leftrightarrow\left(sin2x-2\right)\left(2cos2x-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\cos2x=\frac{m}{2}\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(2x=t\Rightarrow t\in\left[-\frac{3\pi}{4};\frac{\pi}{3}\right]\)
Từ đường tròn lượng giác ta thấy để \(y=\frac{m}{2}\) cắt \(y=cost\) tại 2 điểm pb
\(\Leftrightarrow\frac{1}{2}\le\frac{m}{2}< 1\Leftrightarrow1\le m< 2\)
Cô ơi cho em hỏi chỗ đường tròn lượng giác á cô có thể vẽ ra hộ em đc ko ạ, em cám ơn cô nhiều