Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)
<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{}\text{}\\x\ne l\pi\end{cases}}\); k,l thuộc Z
=>TXĐ: ....
d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
=> TXĐ:...
\(1.\hept{\begin{cases}2-2\cos x\ge0\\\sqrt{2-2\cos x}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\cos x\le1\left(đ\right)\\\cos x\ne-1\end{cases}}\Leftrightarrow x\ne\pi+k2\pi\left(k\in Z\right)\)
\(2.\hept{\begin{cases}\sin3x\ne0\\1+\sin3x\ge0\\1-\sqrt{1+\sin3x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ne k\pi\\\sin3x\ge-1\left(đ\right)\\\sin3x\ne0\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{3}\left(k\in Z\right)\)
\(3.\hept{\begin{cases}\sin2x\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ne k\pi\\x\ne k\pi\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)
xét hàm số sau \(\frac{x+\sqrt{x^2+1}}{\sqrt{1+x^2-x}}+\frac{\sqrt{1+x^2-x}}{x+\sqrt{x^2+1}}\)
=\(\frac{\left(x+\sqrt{x^2+1}\right)\left(\sqrt{1+x^2}+x\right)}{\left(1+x^2\right)-x^2}+\frac{\left(\sqrt{1+x^2-x}\right)\left(\sqrt{x^2+1}-x\right)}{x^2+1-x^2}=\left(x+\sqrt{x^2+1}\right)^2+\left(\sqrt{x^2+1-x}\right)^2=4x^2+2\)
1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)
2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)
3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)
4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)
5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)
\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
Lời giải:
Em không rõ ở phần tìm đạo hàm theo định nghĩa (lim) hay tìm đạo hàm dựa theo công thức
Thông thường lớp 11 thì thường áp dụng luôn công thức
Áp dụng công thức: \((u^{\alpha})'=\alpha.u'.u^{\alpha-1}\) thì:
\(y=(x+\sqrt{1+x^2})^{\frac{1}{2}}\)
\(\Rightarrow y'=\frac{1}{2}(x+\sqrt{x^2+1})'(x+\sqrt{x^2+1})^{\frac{1}{2}-1}\)
\(=\frac{(x+\sqrt{x^2+1})'}{2\sqrt{x+\sqrt{x^2+1}}}(*)\)
\((x+\sqrt{x^2+1})'=x'+(\sqrt{x^2+1})'=1+((x^2+1)^{\frac{1}{2}})'\)
\(=1+\frac{1}{2}(x^2+1)'(x^2+1)^{\frac{1}{2}-1}\)
\(=1+\frac{1}{2}.2x.\frac{1}{\sqrt{x^2+1}}=1+\frac{x}{\sqrt{x^2+1}}(**)\)
Từ \((*);(**)\Rightarrow y'=\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}.2\sqrt{x+\sqrt{x^2+1}}}=\frac{1}{2}\sqrt{\frac{x+\sqrt{x^2+1}}{x^2+1}}\)
ta có : \(y'=\left(\sqrt{x+\sqrt{1+x^2}}\right)'=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(x+\sqrt{1+x^2}\right)'\)
\(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{1}{2\sqrt{1+x^2}}\left(1+x^2\right)'\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{2x}{2\sqrt{1+x^2}}\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}\right)=\dfrac{1}{2}\sqrt{\dfrac{x+\sqrt{1+x^2}}{1+x^2}}\)