K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

ta có:

\(y'=e^xlnx+xe^xlnx+xe^x\frac{1}{x}=e^x\left(lnx+xlnx+1\right)\)

5 tháng 10 2015

ta có:

\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)

5 tháng 10 2015

ta có:

\(y'=\frac{\left(x+\sqrt{x^2+1}\right)'}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1}{\sqrt{x^2+1}}\)

10 tháng 4 2019

11 tháng 5 2017

18 tháng 5 2018

20 tháng 11 2017

29 tháng 4 2019

5 tháng 10 2015

ta có

\(y'=\left(cosx-sinx\right)e^x+\left(sinx+cosx\right)e^x=2.cosx.e^x\)

14 tháng 12 2017

Bla bla, spam tự hỏi tự trả lời nha!

21 tháng 4 2017