Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right)\cdot\left(x^2+506x-2017\right)\)
\(\Leftrightarrow\left(3x^2+x-2016\right)^2-4\left(3x^2+x-2016\right)\left(x^2+506x-2017\right)+4\left(x^2+506x-2017\right)^2=0\)
\(\Leftrightarrow\left(3x^2+x-2016-2x^2-1012x+4034\right)^2=0\)
\(\Leftrightarrow x^2-1011x+2018=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1009\end{matrix}\right.\)
Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha
Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b
h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3
+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)
+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)
theo đề bài, ta có:
f(x)=g(x).(x+2)+10 =>tại x=-2 thì f(x)=10
f(x)=h(x).(x-2)+24 => tại x=2 thì f(x)=24
gọi ax+b là dư của f(x) cho x2-4
ta có:
F(x)=(x2-4).(-5x)+ax+b => tại x=2 thì f(x)=2a+b=24
tại x=-2 thì f(x)=-2a+b=10
=> a=7/2
b=17
=> f(x)=(x2-4).(-5x)+7/2x+17=-5x3+47/2x+17
Gọi thương của phép chia f(x) cho x+3 là A(x)
thương của phép chia f(x) cho x-2 là B(x)
Ta có: \(f\left(x\right)=\left(x+3\right).A\left(x\right)+1\) \(\Rightarrow\) \(f\left(-3\right)=1\)
\(f\left(x\right)=\left(x-2\right).B\left(x\right)+6\) \(f\left(2\right)=6\)
Gọi dư của phép chia f(x) cho x2 + x - 6 là ax + b
Ta có: \(f\left(x\right)=\left(x^2+x-6\right).2x+ax+b\)
\(\Leftrightarrow\)\(f\left(x\right)=\left(x-2\right)\left(x+3\right).2x+ax+b\)
Lần lượt thay \(x=2;\) \(x=-3\) ta có:
\(\hept{\begin{cases}f\left(2\right)=2a+b=6\\f\left(-3\right)=-3a+b=1\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=1\\b=4\end{cases}}\)
Vậy \(f\left(x\right)=\left(x^2+x-6\right).2x+x+4\)
\(=2x^3+2x^2-11x+4\)