Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phantuananh mấy tháng nữa chắc mk cũng chả cần nữa rồi
do có \(1.f\left(x\right)-1.f\left(x-1\right)=...\) nên hệ số của \(x^4\) có thể là bất kì số nào khác 0. Ta lấy là số 1 cho đơn giản.
Đặt \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)
Thay x = -1,0,1,2 (hoặc 4 số bất kì) vào \(f\left(x\right)-f\left(x-1\right)=x^3\), ta được hệ 4 ẩn, 4 pt bậc nhất, từ đó giải ra a, b, c, d.
Thay vô Sn.
1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m
a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\); \(x1.x2=m-1\)
\(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)
\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)
2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2
tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)
tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)
a) Giải phương trình hoành độ giao điểm với a=2 ta đc
\(x^2-2x-2=0\)
\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)
với x=...
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
(P) y = x2
(d) y = 2x + m2 + 1
a) Phương trình hoành độ giao điểm:
\(x^2=2x+m^2+1\) (1)
\(\Leftrightarrow x^2-2x-m^2-1=0\)
Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)
⇒ (1) có 2 nghiệm với mọi m
⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.
b)
\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)
\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)
\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)
\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)
\(=-2\left(m-5\right)^2+2016\le2016\)
Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)
Mình chưa hiểu phần dưới đây lắm
x1(10m+y2)+x2(10m+y1)+1968
=10m(x1+x2)+x1 . x22 +x2.x12+1968
Gọi F(x) = \(ax^4+bx^3+cx^2+dx+e\)
=> F(x-1) = \(a\left(x-1\right)^4+b\left(x-1\right)^3+c\left(x-1\right)^2+d\left(x-1\right)+e\)
F(x) - f(x-1) = x^3 . Rút gọn sau đó cho hệ số bằng nhau
\(Sn=1+2^3+3^3+4^3+...+n^3=\left(1+2+...+n\right)^2=\left(\frac{n\left(n-1\right)}{2}\right)^2\)
Dễ dàng cm bằng pp quy nạp
Với n = 2011 => S2011 =.....