Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{x^3}{x^3+8}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)
x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)
Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)
Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0
hay E=0.
Vậy E=0
nhân \(-x+\sqrt{x^2+3}\) vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
<=> \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
<=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
lấy (1) + (2) => 2(x+y) =0 => x+y=0
lấy