K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

Các chữ số có tận cùng là a khi lũy thừa bậc 4k + 1 thì chữ số tận cùng không thay đổi. 

Nên A có chữ số tận cùng là chữ số tận cùng của tổng sau:

\(1+2+3+...+18=\frac{18\cdot19}{2}=9\cdot19=\left(...1\right)\\ \)

Vậy A có tận cùng là chữ số 1.

8 tháng 2 2018

Chữ số tận cùng của \(2^{202}\) là 4.

Chữ số tận cùng của biểu thức A: là 7

4 tháng 11 2018

Đáp án là 2

3 tháng 4 2017

B=3+32+....+32009

=> 3B = 32+33+3+...+ 32010

3B-B=(32+33+34+...+32010) - (3+32+33+...+32009)

2B=32010 -3 

=> B=(32010 -3) /2

3 tháng 4 2017

mk cần tìm 2 chữ số tận cùng của B cơ

27 tháng 9 2016

TA CÓ:

34=....1

MÀ 2020 CHIA HẾT CHO 4dư2=>32020 CÓ TẬN CÙNG LÀ 9

62=....6

MÀ 2010 CHIA HẾT CHO 2=>62010CÓ TẬN CÙNG LÀ6

92=...1

MÀ 2010 CHIA HẾT CHO2=>92010CÓ TẬN CÙNG LÀ1

124=...6

MÀ2010 CHIA HẾT CHO 4dư2=>122010CÓ TẬN CÙNG LÀ4

152=...5

MÀ 2010 CHIA HẾT CHO 2=>52010CÓ TẬN CÙNG LÀ5

184=...6

MÀ 2010 CHIA HẾT CHO 4dư2=>182010CÓ TẬN CÙNG LÀ4

CÓ:...9-...6+....1-....4+...5-....4=...1

=>chữ số tận cùng của biểu thức trên là 1

27 tháng 9 2016

đầu tiên bạn lấy 3^2020(mod 1000)= 401

                           6^2010(mod 1000)=176 

                           9^2010(mod 1000)=401

                          12^2010(mod 1000)=224

                          15^2010(mod 1000)=625

                          18^2010(mod 1000)=624

Ta có 401-176+401-224+625-624=406

Vậy chữ số tận cùng của biểu thức trên là : 6

19 tháng 11 2016

ko thấy gì cả

19 tháng 11 2016

<=> \(A=19^{5^1}+2^{9^1}\)

<=>\(A=19^5+2^9\)

Ta thấy: 19 ≡ 9(mod 10)

<=>19 ≡ -1(mod 10)

<=>19≡ (-1)5(mod 10)

<=>19≡ -1(mod 10)

Lại có: 29=512 ≡ 2(mod 10)

<=>29 ≡ 2(mod 10)

            =>195+2≡ -1+2(mod 10)

            <=>A≡1(mod 10)

Vậy chữ số tận cùng của A là 1

2 tháng 8 2016

x-y = 3 =>x=3+y

=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

Áp dụng BĐT chứa dấu giá trị tuyệt đối:

\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)

=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0

=>\(-1\le y\le3\)

Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3

2 tháng 8 2016

B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)

Vậy chữ số tận cùng của A là 1