K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

4^3^10=4^30=(4^2)^15=..........6^15=...........6

2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4

2^3^4=2^12=(2^4)^3=.............6^3=...............6

3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3

9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9

29 tháng 5 2018

C3:

Gọi UCLN(12n + 1 ; 30n + 2) là d

Ta có : 12n + 1 \(⋮\)\(\Rightarrow\)5(12n + 1) \(⋮\)\(\Rightarrow\)60n + 5 \(⋮\)d

           30n + 2 \(⋮\)\(\Rightarrow\)2(30n + 2) \(⋮\)\(\Rightarrow\)60n + 4 \(⋮\)d

\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d

\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\subset\){ 1 ; -1 }

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

29 tháng 5 2018

Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố

=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1

Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

2 tháng 11 2019

Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)

    \(3B=3^2+3^3+3^4+...+3^{2006}\)

\(3A-A=3^{2006}-3\)

Hay \(2A=3^{2006}-3\)

+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3

b) Ta có: \(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^{101}-3\)

Hay \(2A=3^{101}-3\)

+) theo đề ra, ta có: \(2A+3=3^n\)

\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)

\(\Rightarrow n=101\)

Mỏi tay wóa!!! Học tốt nha^^

 B1

Có B=3+32+...+32005

=>3B=32+33+...+32006

=>2B=3B-B=32006-3

=>2B+3=32006-3+3=32006

=>Đpcm

B2

Có A=3+32+..+3100

=>3A=32+33+...+3101

=>2A=3A-A=3101-3

=>2A+3=3101-3+3=3101=3n

=>n=101

25 tháng 6 2018

k cho mk nha. Gấp lém

25 tháng 6 2018

A) (32)3=32.3=36

(33)2=33.2=36

98=(32)8=32.8=316

276=(33)6=33.6=318

8110=(34)10=34.10=340

20 tháng 9 2016

3^7 : 3^5 = 3^7-5 = 3^2 = 9

5^9 : 5^3 = 5^9-3 = 5^3 = 125

9^10 : 9^8 = 9^10-8 = 9^2 = 81

20 tháng 9 2016

\(3^7:3^5=3^{7-5}=3^2\)

\(5^9:5^3\)\(=5^{9-3}=5^6\)

\(9^{10}:9^8=9^{10-8}=9^2\)

\(nha^{ }\)

24 tháng 4 2017

- Số tận cùng của 14^14^14 là 6

- Số tận cùng của 9^9^9 là 9

- Số tận cùng của 2^3^4 là 6

=> 6+9+6= 21

=> Số tận cùng của P là 1

21 tháng 1 2020

\(P=14^{14^{14}}+9^{9^9}+2^{3^4}=14^{\left(...6\right)}+9^{\left(...1\right)}+2^{\left(...1\right)}=\left(...6\right)+\left(...9\right)+\left(...2\right)\)

\(=\left(...7\right)\)

28 tháng 4 2020

P = \(14^{14^{14}}+9^{9^9}+2^{3^4}\)

\(P=\left(...6\right)+\left(...9\right)+\left(...2\right)=\left(...7\right)\)

Vậy P tận cùng là 7

cái này bạn học lí thuyets mới nói chữ số tận cùng đc

6 tháng 5 2020

mk hiểu r

                                                              #nice

11 tháng 10 2016

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

 mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

5 tháng 7 2018

\(a,\) \(\left(3^2\right)^3\) = \(3^{2.3}\) = \(3^6\)

\(\left(3^3\right)^2\) = \(3^{3.2}=3^6\)

\(\left(3^2\right)^5\) = \(3^{2.5}=3^{10}\)

\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)

b, \(\left(5^3\right)^2=5^{3.2}=5^6\)

\(\left(5^4\right)^3=5^{4.3}=5^{12}\)

\(\left(5^2\right)^4\) = \(5^{2.4}=5^8\)

\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)