Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)
\(3B=3^2+3^3+3^4+...+3^{2006}\)
\(3A-A=3^{2006}-3\)
Hay \(2A=3^{2006}-3\)
+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3
b) Ta có: \(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^{101}-3\)
Hay \(2A=3^{101}-3\)
+) theo đề ra, ta có: \(2A+3=3^n\)
\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
Mỏi tay wóa!!! Học tốt nha^^
B1
Có B=3+32+...+32005
=>3B=32+33+...+32006
=>2B=3B-B=32006-3
=>2B+3=32006-3+3=32006
=>Đpcm
B2
Có A=3+32+..+3100
=>3A=32+33+...+3101
=>2A=3A-A=3101-3
=>2A+3=3101-3+3=3101=3n
=>n=101
- Số tận cùng của 14^14^14 là 6
- Số tận cùng của 9^9^9 là 9
- Số tận cùng của 2^3^4 là 6
=> 6+9+6= 21
=> Số tận cùng của P là 1
\(P=14^{14^{14}}+9^{9^9}+2^{3^4}=14^{\left(...6\right)}+9^{\left(...1\right)}+2^{\left(...1\right)}=\left(...6\right)+\left(...9\right)+\left(...2\right)\)
\(=\left(...7\right)\)
P = \(14^{14^{14}}+9^{9^9}+2^{3^4}\)
\(P=\left(...6\right)+\left(...9\right)+\left(...2\right)=\left(...7\right)\)
Vậy P tận cùng là 7
cái này bạn học lí thuyets mới nói chữ số tận cùng đc
Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).
mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:
(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
\(a,\) \(\left(3^2\right)^3\) = \(3^{2.3}\) = \(3^6\)
\(\left(3^3\right)^2\) = \(3^{3.2}=3^6\)
\(\left(3^2\right)^5\) = \(3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
b, \(\left(5^3\right)^2=5^{3.2}=5^6\)
\(\left(5^4\right)^3=5^{4.3}=5^{12}\)
\(\left(5^2\right)^4\) = \(5^{2.4}=5^8\)
\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)
4^3^10=4^30=(4^2)^15=..........6^15=...........6
2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4
2^3^4=2^12=(2^4)^3=.............6^3=...............6
3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3
9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9