Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 20122015=20122012.20123
=(20124)503 . (......8)
=(.......6).(..........8)
=(...............8)
Vậy: 20122015 tận cùng bằng 8
a, 57^2015=57^2012.57^3=...1 x ...3=...3
Vậy 57^2015 có chữ số tận cùng là 3
b, 93^2016=...1
Vậy 93^2016 có chữ số tận cùng là 1
Giải thích nha: vì ...7^3=...3 (quá dễ nhá);các số có tận cùng là 3,7,9 thì khi nâng lên lũy thừa 4n thì có chữ số tận cùng là 1
GỬI NGHÌN !!!!!!!!!!!!!!
1, cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
2,tim x,y,zbiết :
a) 3(x-2) - 4(2x+1) - 5(2x+3) = 50
b) $$ :( 4- 1/3 I 2x +1I = 21/22
c) 3z-2y /37 = 5y- 3z / 15= 2z- 5x/2 va 10x -3y - 2z = -4
Ta có :
2015 : 4 = 503 nhóm ( dư 2 thừa số 2 )
=> Chữ số tận cùng của số 22015 là 4.
Ta có:
24n + 1 = ...2
=> 24n + 3 = ...2 . 2 . 2 = ...8
Mà 2015 chia 4 dư 3
=> 22015 = ...8
Những số có tận cùng là 5 thì mũ bao nhiêu cũng vẫn sẽ có tận cùng là 5 và nó có dạng:\(...5^x=...5\)
Vậy 2015^2016= một số có tận cùng là 5
Những số có tận cùng là 4 mà số mũ của nó là số lẻ thì nó sẽ có số tận cùng là 4 và nó có dạng:\(...4^x=...4\)
Vì 2015^2016 là số lẻ nên 2014^2015^2016 sẽ có số tận cùng là 4
cho minh nha
A) Có 57^2015 = 57^2012.57^3=(57^4)^503.57^3=a1.b3=c3
=> chữ số tận cùng của 57^2015 là 3
B) Có 93^2015=93^2012.93^3=(93^4)^503.93^3=x1 . y7 = z7
=>chứ số tận cùng của 93^2015 là 7
Máy mình lỗi nên viết lũy thừa hơi khó nhìn.
a)Ta có: 57 đông dư với 7(mod 10)
=>572 đồng dư với 72(mod 10)
=>572 đồng dư với 49(mod 10)
=>572 đồng dư với 9(mod 10)
=>572 đồng dư với -1(mod 10)
=>(572)1007 đồng dư với (-1)1007(mod 10)
=>572014 đồng dư với -1(mod 10)
=>572014 đồng dư với 9(mod 10)
=>572014.57 đồng dư với 9.7(mod 10)
=>572015 đồng dư với 63(mod 10)
=>572015 đồng dư với 3(mod 10)
=>572015 có tận cùng là 3
b)93 đồng dư với 3(mod 10)
=>932 đồng dư với 32(mod 10)
=>932 đồng dư với 9(mod 10)
=>932 đồng dư với -1(mod 10)
=>(932)1007 đồng dư với (-1)1007(mod 10)
=>932014 đồng dư với -1(mod 10)
=>932014 đồng dư với 9(mod 10)
=>932014.93 đồng dư với 9.3(mod 10)
=>932015 đồng dư với 27(mod 10)
=>932015 đồng dư với 7(mod 10)
=>932015 có tận cùng là 7