K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 5 2019

\(x^2-2\left(y-1\right)x+y^2-3=0\)

\(\Delta'=\left(y-1\right)^2-\left(y^2-3\right)\ge0\)

\(\Leftrightarrow4-2y\ge0\Rightarrow y\le2\)

\(\Rightarrow y_{max}=2\)

Khi đó \(x=\frac{2\left(y-1\right)}{2}=y-1=1\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

x2-2x(y-1)+y2-3=0

\(\Delta'=\left(y-1\right)^2-\left(y^2-3\right)\ge0.\)

<=> 4-2y\(\ge\)0=> y\(\le\)2

=> ymax=2

Khi đó x=y-1=1

25 tháng 9 2016

x2+y2+6x-3x-2xy+7=0

\(\Leftrightarrow x^2+2\left(3-y\right)x+y^2-3y+7=0\)

Coi đây là pt bật 2 ẩn x ta có

\(\Delta'=\left(3-y\right)^2-y^2+3y-7\)

\(=y^2-6y+9-y^2+3y-7\)

\(=2-3y\)

Để pt có nghiệm \(\Leftrightarrow\Delta'\le0\)

\(\Rightarrow2-3y\le0\Leftrightarrow y\le\frac{2}{3}\)

y lớn nhất \(\Rightarrow y=\frac{2}{3}\)

thay vào tính tiếp

 

17 tháng 6 2021

sao denta phẩy lại bé hơn 0 ???

3 tháng 7 2021

Ta có: 2x2 + 2xy - x + y = 66

<=> (x + y)2 + x2 - y2 - (x - y) = 66

<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1 + x - y) = 65

<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)

Lập bảng: 

x + y - 1  1 5 13 65
 2x + 1 65 13 5 1
  x 32 6 2 0
  y -30 (ktm) 0 12 66

Vậy ...

(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41

⇒ y = {0; ±1; ±2; ±3} 

Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy) 

 Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒  x = −1

                                                         x = −2

- Với y=-1............................ bạn làm tương tự

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

26 tháng 10 2020

\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)

Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)

\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)

Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)

  • Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)
  • Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)