Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41
⇒ y = {0; ±1; ±2; ±3}
Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy)
Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒ x = −1
x = −2
- Với y=-1............................ bạn làm tương tự
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
Ta có: 2x2 + 2xy - x + y = 66
<=> (x + y)2 + x2 - y2 - (x - y) = 66
<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1 + x - y) = 65
<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)
Lập bảng:
x + y - 1 | 1 | 5 | 13 | 65 |
2x + 1 | 65 | 13 | 5 | 1 |
x | 32 | 6 | 2 | 0 |
y | -30 (ktm) | 0 | 12 | 66 |
Vậy ...
\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)
Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)
\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)
Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)
- Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)
- Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)
Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)
<=>(x2 +y2 +1+2xy-2x-2y) +2(x2 - 12x+36) = 54
<=>(x+y-1)2 +2(x-6)2 =62 +2*32
=>x+y-1=6 và x-6=3
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
x2-2x(y-1)+y2-3=0
\(\Delta'=\left(y-1\right)^2-\left(y^2-3\right)\ge0.\)
<=> 4-2y\(\ge\)0=> y\(\le\)2
=> ymax=2
Khi đó x=y-1=1