Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:
\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)
\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{a^2\left(a+1\right)^2+a^2+\left(a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=\sqrt{\dfrac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=\sqrt{\dfrac{\left(a\left(a+1\right)+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a\left(a+1\right)+1}{a+1}+\dfrac{a}{a+1}\)
\(=\dfrac{a^2+2a+1}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\)
\(\Rightarrow VP=6831\)
Không làm mất tính tổng quát, giả sử \(x\le y\le z\)
Dễ dàng kiểm chứng \(x=y=z\) không phải là nghiệm
\(3^x+3^y+3^z=6831\Leftrightarrow3^x\left(1+3^{y-x}+3^{z-x}\right)=3^3.253\)
Nếu \(1+3^{y-x}+3^{z-x}\ne253\Rightarrow1+3^{y-x}+3^{z-x}=253.3^k⋮3\)
Nhưng \(1+3^{y-x}+3^{z-x}⋮̸3\) với \(\left\{{}\begin{matrix}x\ne y\\x\ne z\end{matrix}\right.\)\(\Rightarrow\) vô lý
Vậy \(\left\{{}\begin{matrix}3^x=3^3\\1+3^{y-x}+3^{z-x}=253\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\3^{y-3}+3^{z-3}=252\end{matrix}\right.\)
\(\Rightarrow3^{y-3}\left(1+3^{z-y}\right)=252=3^2.28\)
Do \(3^{z-y}+1⋮̸3\) lý luậnt ương tự như trên \(\Rightarrow\left\{{}\begin{matrix}3^{y-3}=3^2\\1+3^{z-y}=28\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y-3=2\\3^{z-y}=27=3^3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\z=8\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=3\\y=5\\z=8\end{matrix}\right.\)