Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
1) Ta có : 5xy + 2x - 5y = 7
=> x(5y - 2) - 5y + 2 = 7 + 2
=> x(5y - 2) - (5y - 2) = 9
=> (5y - 2)(x - 1) = 9
Với \(x;y\inℕ\Rightarrow\hept{\begin{cases}5y-2\inℕ^∗\\x-1\inℕ^∗\end{cases}}\)
=> có 9 = 3.3 = 1.9
Lập bảng xét các trường hợp
x - 1 | 1 | 9 | 3 |
5y - 2 | 9 | 1 | 3 |
x | 2 | 10 | 4(tm) |
y | 2,2 | 0,6 | 1(tm) |
Vậy x = 4 ; y = 1
2) A = 75.(42018 + 42017 + .... + 42 + 4) + 25
Đặt B = 42018 + 42017 + .... + 42 + 4
Khi đó A = 75B + 25
<=> 4B = 42019 + 42018 + .... + 43 + 42
Lấy 4B trừ B cả 2 vế ta có :
4B - B = ( 42019 + 42018 + .... + 43 + 42) - (42018 + 42017 + .... + 42 + 4)
3B = 42019 - 4
=> B = \(\frac{4^{2019}-4}{3}\)
=> A = \(75\frac{4^{2019}-4}{3}+25=25.\left(4^{2019}-4\right)+25=25\left(4^{2019}-3\right)=25.4^{2019}-75\)
Vì \(25.4^{2019}⋮4^{2019}\Rightarrow25.4^{2019}-75:4^{2019}\text{ dư 75 }\Rightarrow A:4^{2019}\text{ dư 75}\)
Vậy số dư khi A chia cho 42019 là 75
Lời giải:
$2x+5y=2021$ lẻ nên $5y$ lẻ. Do đó $y$ lẻ
$5y=2021-2x\leq 2021$ với mọi $x\in\mathbb{N}$
$\Rightarrow y\leq 404,2$. Mà $y$ tự nhiên nên $y\leq 404$
Với $y$ là số tự nhiên lẻ, $y\leq 404$ thì $y$ có thể nhận giá trị từ $1,3,5,...,403$
Như vậy, có $202$ giá trị của $y$ thỏa mãn, kéo theo $202$ cặp $(x,y)$ thỏa đkđb.