K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a) |2x-3|+x=21

|2x-3|=21-x

\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)

TH1: 2x-3=21-x

2x-x=21+3

x=24

TH2: 2x-3=-(21-x)

2x-3 = -21+x

2x-x=-21+3

x=-18

Vậy x \(\varepsilon\){-18;24}

29 tháng 6 2019

\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x=-\frac{13}{4}\)

\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)

29 tháng 6 2019

\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)

\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)

\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)

\(\Leftrightarrow x=-\frac{6}{11}\)

d,e,f Tương tự

1 tháng 9 2016

ek cu hay qua do 

                      n.minh

 

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...