Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: với x,y,z thuộc N; x<y<z ta có: 2^x + 2^y + 2^z = 2336
=> 2^z <2336
=> z nhỏ hơn hoăc 11 (1)
ta có: 2^z + 2^z + 2^z > 2^x + 2^y + 2^z
=> 3.2^z > 2336
=> 2^z nhỏ hơn hoặc = 778
=> z nhỏ hơn hoặc = 10 (2)
từ (1) và (2) suy ra z = {10; 11}
TH1: z = 10
=> 2^x + 2^y = 1312
=> 2^y < 1312
=> y nhỏ hơn hoặc = 10 (3)
ta có 2.2^y > 2^x + 2^y
=> 2.2^y > 1312
=> 2^y > 656
=> y nhỏ hơn hoặc = 10 (4)
từ (3) và (4) => y = 10 mà z = 10 ( LOẠI)
TH2: z = 11
=> 2^x + 2^y = 288
=> 2^y < 288
=> y nhỏ hơn hoặc = 8 (5)
ta có 2.2^y > 2^x + 2^y
=>2.2^y > 288
=> 2^y > 144
=> y nhỏ hơn hoặc bằng 8 (6)
từ (5) và (6) => y = 8
nhỏ hơn hoặc= 2^x + 2^8 = 288
=> 2^x = 32
=> x= 5 (chọn)
KL: vậy x = 5; y = 8; z = 11.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Theo bài ra ta có : 2^x + 2^y + 2^z = 512
2^x +2^y + 2^z = 2^9
2^x + 2^y + 2^z -2^9 =0
Gptcc :
=> x=7
y=7
z=8
x=8
y=7
x=7
ok