\(y=\dfrac{x}{2-x}\)                    ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Vì ( hoặc ) nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

( hoặc ) nên đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số.

b) Tiệm cận đứng : x = -1 ; tiệm cận ngang : y = -1.

c) Tiệm cận đứng : ; tiệm cận ngang :

d) Tiệm cận đứng : x = 0 ; tiệm cận ngang : y = -1.

31 tháng 3 2017

a) Vì ( hoặc ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.

nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.

b) Hai tiệm cận đứng : ; tiệm cận ngang : .

c) Tiệm cận đứng : x = -1 ;

nên đồ thị hàm số không có tiệm cận ngang.

d) Hàm số xác định khi :

( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.

31 tháng 3 2017

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;

Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2

Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12

Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.

Bảng biến thiên :

Đồ thị như hình bên.

31 tháng 3 2017

a) Tập xác định : D = R { 1 }. > 0, ∀x 1.

Hàm số đồng biến trên các khoảng : (-; 1), (1 ; +).

b) Tập xác định : D = R { 1 }. < 0, ∀x 1.

Hàm số nghịch biến trên các khoảng : (-; 1), (1 ; +).

c) Tập xác định : D = (- ; -4] ∪ [5 ; +).

∀x ∈ (- ; -4] ∪ [5 ; +).

Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (- ; -4) và đồng biến trên khoảng (5 ; +).

d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.

Hàm số nghịch biến trên các khoảng : (- ; -3), (-3 ; 3), (3 ; +).

31 tháng 3 2017

Hỏi đáp Toán

31 tháng 3 2017

a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);

y' = 0 ⇔ x = 0, x = ±2 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);

y' = 0 ⇔ x = 0, x = ±1 .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

.

19 tháng 9 2020

bn lm dài thế chi tiết nx mn tick cho bn này nè mk hok r nên bt

31 tháng 3 2017

*Xét hàm số: y= -x3 + 2x2 – x – 7

Tập xác định: D = R

\(y'\left(x\right)=-3x^2+4x-1\)\(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )

Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).

Tập xác định: D = R{1}

\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)

Vậy hàm số nghịch biến trong từng khoảng (-,1) và (1, +)

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .