\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)

\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)

\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)

\(=\dfrac{bc+b+1}{bc+b+1}=1\)

Vậy S = 1

12 tháng 3 2017

Thay \(abc=105\) ta có:

\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)

\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)

Vậy \(S=1\)

27 tháng 4 2017

Số đối của phân số \(\dfrac{a}{b}\)\(\dfrac{-a}{b}\) hoặc \(\dfrac{a}{-b}\) hoặc \(-\dfrac{a}{b}\)

Số nghịch đảo của phân số \(\dfrac{a}{b}\)\(\dfrac{b}{a}\)

2 tháng 5 2017

Số đối của \(\dfrac{a}{b}\)\(\dfrac{-a}{b}\) hoặc \(\dfrac{a}{-b}\) hoặc \(-\dfrac{a}{b}\).

Số nghịch đảo của \(\dfrac{a}{b}\)\(\dfrac{b}{a}\) hoặc \(\dfrac{-b}{-a}\).

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

10 tháng 4 2017

n=(-7;-1;1;7)

10 tháng 4 2017

A= 6n/6n + 42/6n

A= 1 + 42/6n

Muốn A nguyên thì 42/6n phải nguyên

Suy ra 6n thuộc ước của 42

Suy ra n thuộc 2,-2,7,-7

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)