Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, Ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)
b, Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
2x\3=3y\4=4z\5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số bẳng nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=12.49/49=12
suy ra 12x/18=12=>12x=216=>x=12
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
Tìm các số x, y, z biết:
a) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(x+y+z=49\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{x-1+y-2+z-3}{2+3+4}=\dfrac{49-6}{9}=\dfrac{43}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{43}{9}\\\dfrac{y-2}{3}=\dfrac{43}{9}\\\dfrac{z-3}{4}=\dfrac{43}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{86}{9}\\y-2=\dfrac{43}{3}\\z-3=\dfrac{172}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{9}\\y=\dfrac{49}{3}\\z=\dfrac{199}{9}\end{matrix}\right.\)
Vậy \(x=\dfrac{95}{9};y=\dfrac{49}{3};z=\dfrac{199}{9}\)
b) \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và \(x+y+z=49\)
Đặt \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)
Theo giả thiết ta có: \(x+y+z=49\)
\(\Leftrightarrow\dfrac{3k}{2}+\dfrac{4k}{3}+\dfrac{5k}{4}=49\)
\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)
\(\Leftrightarrow18k+16k+15k=588\)
\(\Leftrightarrow49k=588\)
\(\Leftrightarrow k=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)