K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

Từ đề bài => x,y,z >0

Nhân theo vế 3 dữ kiện trên ta được x2y2z2=16 => xyz=4(1)

Mà \(z\sqrt{xy}=1=>z^2xy=1\)(2)

Lấy (2) chia (1)=> z=1/4

Và \(y\sqrt{zx}=2=>y^2zx=4\)(3)

Lấy (3) chia (1)=> y=1

Vì xyz=4=> x=16

Vậy x=16; y=1;z=1/4

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3