\(x\sqrt{yz}=8\) ;\(y\sqrt{zx}=2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn

3 tháng 1 2021

\(P\ge\frac{x+y+z}{2}\ge\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\frac{1}{2}\)

"=" khi \(x=y=z=\frac{1}{3}\)

6 tháng 10 2018

\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)

\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\) 

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)  

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\) 

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)

Dự đoán Min P=1 khi x+y+z=3

Đặt \(t=x+y+z\ge3\) 

\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\) 

\(\Rightarrow P\ge1\)

8 tháng 10 2018

bạn là một thiên tài

18 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{xy}{\sqrt{z+xy}}=\frac{xy}{\sqrt{z\left(x+y+z\right)+xy}}=\frac{xy}{\sqrt{xz+yz+z^2+xy}}\)

\(=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{yz}{\sqrt{x+yz}}\le\frac{1}{2}\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right);\frac{xz}{\sqrt{y+xz}}\le\frac{1}{2}\left(\frac{xz}{y+z}+\frac{xz}{x+y}\right)\)

Cộng theo vế các BĐT trên ta có:

\(P\le\frac{1}{2}\left(\frac{xy+yz}{x+z}+\frac{yz+xz}{x+y}+\frac{xy+xz}{y+z}\right)\)

\(=\frac{1}{2}\left(\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}\right)\)

\(=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z=1\right)\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

5 tháng 9 2018

\(\Rightarrow\left(x\sqrt{yz}\right)^2=\left(8y\sqrt{xz}\right)^2=\left(2z\sqrt{xy}\right)^2=1^2\Rightarrow x^2yz=64xy^2z=4xyz^2=1\)

\(x^2yz=1\Rightarrow xyz=\frac{1}{x};64xy^2z=1\Rightarrow xyz=\frac{1}{64y};4xyz^2=1\Rightarrow xyz=\frac{1}{4z}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{64y}=\frac{1}{4z}\left(=xyz\right)\Rightarrow x=64y=4z\)

\(x=64y\Rightarrow\frac{x}{64}=y;x=4z\Rightarrow\frac{x}{4}=z\)

\(x^2yz=1\Rightarrow x^2\cdot\frac{x}{64}\cdot\frac{x}{4}=\frac{x^4}{256}=1\Rightarrow x^4=256\Rightarrow x=4\)

\(x=64y\Rightarrow4=64y\Rightarrow y=\frac{1}{16}\)

\(x=4z\Rightarrow4=4z\Rightarrow z=1\)

vậy \(x=4;y=\frac{1}{16};z=1\)