K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

x,y,z,t là các số nguyên hay sao vậy bạn?

 

Vì :

| x - y | cùng tính chất chẵn lẻ với x - y

| y - z | cùng tính chất chẵn lẻ với y - z

| z - t | cùng tính chất chẵn lẻ với z - t

| t - x | cùng tính chất chẵn lẻ với t - x 

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)

Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)

là số chẵn 

= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn 

Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)

= > không có các số thỏa mãn 

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học

Ai giải đc cho 20k. nhanh tay nha, 1 người duy nhất

15 tháng 1 2018

gửi k mới là chuyện

29 tháng 12 2017

Không mất tính tổng quát giả sử \(x\ge y\ge z\ge t\)

Khi đó: \(\left\{{}\begin{matrix}x-y\ge0\\y-z\ge0\\z-t\ge0\\t-x\le0\end{matrix}\right.\) Hay \(\left\{{}\begin{matrix}\left|x-y\right|=x-y\\\left|y-z\right|=y-z\\\left|z-t\right|=z-t\\\left|t-x\right|=x-t\end{matrix}\right.\)

\(pt\Leftrightarrow x-y+y-z+z-t+x-t=2017\)

\(\Rightarrow2\left(x-t\right)=2017\Leftrightarrow x-t=\dfrac{2017}{2}\)

p/s: Tới đó thôi,t nghĩ đề bài thiếu.Có thể là x;y;z;t là số nguyên và suy ra vô nghiệm

29 tháng 12 2017

Ta có:

|x-y| có cùng tính chẵn lẻ với x-y

|y-z| có cùng tính chẵn lẻ với y-z

|z-t| có cùng tính chẵn lẻ với z-t

|t-x| có cùng tính chẵn lẻ với t-x

=> |x-y| + |y-z| + |z-t| + |t-x| có cùng tính chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)

\(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=0\) là số chẵn

=> |x-y| + |y-z| + |z-t| + |t-x| chẵn

Mà 2017 lẻ

=> Không có x,y,z,t thoả mãn đề bài

21 tháng 8 2017

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2017\)

Với \(x;y;z;t\ge0\) thì:

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=\left|x-y+y-z+z-t+x-x\right|=0\)\(\Rightarrow0=2017\) (loại)

Với \(x;y;z;t< 0\) thì:

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=\left|-x+y-y+z-z+t-t+x\right|=0\)\(\Rightarrow0=2017\) (loại)
Vậy ko có \(x;y;z;t\) thỏa mãn

22 tháng 9 2016

Ta có : \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=20092009\)

\(\Rightarrow\left|x-y+y-z+z-t+t-x\right|=20092009\)

\(\Rightarrow\left|0\right|=20092009\)

\(\Rightarrow0=20092009\) ( Vô lý )

\(\Rightarrow\) Không có giá trị thõa mãn \(x,y,t,z\)

22 tháng 9 2016

Ta có:

(x - y) + (y - z) + (z - t) + (t - x)

= x - y + y - z + z - t + t - x

= 0, là số chẵn

Do |x - y| + |y - z| + |z - t| + |t - x| luôn cùng tính chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà theo đề bài |x - y| + |y - z| + |z - t| + |t - x| = 20092009, là số lẻ, vô lý

Vậy không tồn tại giá trị của x; y; z; t là số nguyên thỏa mãn đề bài

13 tháng 4 2017

a)

TH1. nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|\ge\left|x+0\right|=\left|x\right|\\\left|y\right|\ge\left|0+y\right|=\left|y\right|\end{matrix}\right.\) hiển nhiên đúng

TH2.với x, y khác 0

x.y>0 nghĩa là x, y cùng dấu

\(\left|x+y\right|=\left|-x-y\right|=\left|x\right|+\left|y\right|\)

x.y<0 nghĩa là x, y trái dấu

\(\left|x+y\right|=\left|\left|x\right|-\left|y\right|\right|\)

Nếu \(\left|x\right|\ge\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|x\right|-\left|y\right|\)(1)

Nếu \(\left|x\right|\le\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|y\right|-\left|x\right|\)(2)

hiển nhiển \(\left|x\right|+\left|y\right|\) luôn lơn hơn (1) và (2)

TH1 và TH2 => dpcm

b) x,y,z,t có vai trò như nhau đối VT =>

không mất tính tổng quát g/s: \(\left|x\right|\ge\left|y\right|\ge\left|z\right|\ge\left|t\right|\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=\left|x\right|-\left|y\right|\\\left|y-z\right|=\left|y\right|-\left|z\right|\\\left|z-t\right|=\left|z\right|-\left|t\right|\\\left|t-x\right|=\left|x\right|-\left|t\right|\end{matrix}\right.\)

Cộng lại

VT =\(2\left(\left|x\right|-\left|t\right|\right)\) vậy VT luôn là một số chẵn VP là số lẻ => vô nghiệm

1 tháng 11 2017

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)

\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\)

\(\Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\\\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+y+z\right)=y\left(x+y+z\right)\\y\left(x+y+z\right)=z\left(x+y+z\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+z\right)=0\\\left(y-z\right)\left(x+y+z\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y+z=0\end{matrix}\right.\\\left[{}\begin{matrix}y=z\\x+y+z=0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=z\\x+y+z=0\end{matrix}\right.\)

\(\circledast\) Với \(x=y=z\) thì \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

\(\circledast\) Với \(x+y+z=0\) thì\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Khi đó \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\dfrac{-xyz}{xyz}=-1\)