K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy

(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)

\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)

Ta có: \(\left(x+y+1\right)^2\ge o\)

Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)

Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)

Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài

Kết quả: x=0; y=-1

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

NV
18 tháng 9 2019

ĐKXĐ: ...

\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right).y+y^2+\sqrt{2x-y-4}=0\)

\(\Leftrightarrow\left(x+y+1\right)^2+\sqrt{2x-y-4}=0\)

Do \(\left\{{}\begin{matrix}\left(x+y+1\right)^2\ge0\\\sqrt{2x-y-4}\ge0\end{matrix}\right.\)

Nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+1=0\\2x-y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

30 tháng 4 2020

sol của tớ :3

Nếu y=0 thì x2=1 => P=2

Nếu y\(\ne\)0 .Đặt \(t=\frac{x}{y}\)

\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2\left(x^2+6xy\right)}{x^2+2xy+3y^2}=\frac{2\left[\left(\frac{x}{y}\right)^2+6\cdot\frac{x}{y}\right]}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}=\frac{2\left(t^2+6t\right)}{t^2+2t+3}\)

\(\Rightarrow P.t^2+2P\cdot t+3P=2t^2+12t\)

\(\Leftrightarrow t^2\left(P-2\right)+2t\left(P-6\right)+3P=0\)

Xét \(\Delta'=\left(P-2\right)^2-3P\left(P-6\right)=-2P^2-6P+36\ge0\)

\(\Leftrightarrow-6\le P\le3\)

Dấu bằng xảy ra khi:

Max:\(x=\frac{3}{\sqrt{10}};y=\frac{1}{\sqrt{10}}\left(h\right)x=\frac{3}{-\sqrt{10}};y=\frac{1}{-\sqrt{10}}\)

Min:\(x=\frac{3}{\sqrt{13}};y=-\frac{2}{\sqrt{13}}\left(h\right)x=-\frac{3}{\sqrt{13}};y=\frac{2}{\sqrt{13}}\)

21 tháng 9 2019

khó ha

1 tháng 2 2018

1)

\(2x^2-2xy+5y^2-2x-2y+1=0.\)

\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)