Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
b)\(x^3-x^2-x=\frac{1}{3}\)
\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)
\(\Leftrightarrow3x^3=3\left(x^2+x+\frac{1}{3}\right)\)
\(\Leftrightarrow3x^3=3x^2+3x+1\)
\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)\(\Leftrightarrow\sqrt[3]{4}x=x+1\)
\(\Leftrightarrow\sqrt[3]{4}x-x=1\)\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x+1\right)=0\)
Ok...
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)
Tương tự rồi cộng theo vế:
\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)
\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)
Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)
\(\Rightarrow A\le\dfrac{2020}{3}\)
Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)
Vậy ko ra yếu zzzz
Bài 1:
Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)
\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)
\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow10y=0\Rightarrow y=0\)
Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)
2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)
And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)
\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)
Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)
Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm )
\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)
Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)
Tương tự, ta cũng có:
\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)
\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)
\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm )
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Áp dụng AM - GM:
\(2x^2+\frac{1}{2}z^2\ge2\sqrt{2x^2.\frac{1}{2}z^2}=2xz\)
\(2y^2+\frac{1}{2}z^2\ge2\sqrt{2y^2.\frac{1}{2}z^2}=2yz\)(x,y,z dương)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
Cộng từng vế của các BĐT trên:
\(T\ge2\left(xy+yz+xz\right)=10\)
(Dấu "="\(\Leftrightarrow x=1;y=1;z=2\))