K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

x:y:z=4:5:6

--> x/4=y/5=z/6

Đặt x=4k; y=5k; z=6k

x^2-2y^2+z^2=18

(4k)^2-2.(5k)^2+(6k)^2=18

2k^2=18

k^2=9

k=3 hoặc k=-3

Khi k=3

--> x=4.3=12

y=5.3=15

z=6.3=18

Khi k=-3

--> x=4.(-3)=-12

y=5.(-3)=-15

z=6.(-3)=-18

10 tháng 9 2016

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=K\)

\(\Rightarrow\hept{\begin{cases}x=4k\\y=5k\\z=6k\end{cases}}\)

\(\Rightarrow x^2-2y^2+z^2\)

\(=\left(4k\right)^2-2.\left(5k\right)^2+\left(6k\right)^2\)

\(=4^2.k^2-2.5^2.k^2+6^2.k^2\)

\(=k^2.\left(4^2-2.5^2+6^2\right)\)

\(=k^2.102\)

=> Thiếu Đề 

10 tháng 9 2016

không thiếu đâu nha bạn!

7 tháng 7 2018

ai làm cho mik đi

8 tháng 7 2018

\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)

Suy ra :

\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)

\(5x+2=4x+6\)

\(5x-4x=6-2\)

\(x=4\)

\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)

\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)

\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)

\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)

Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)

Thay vào đề , ta có : xyz = 640

\(\Rightarrow4k\cdot8k\cdot20k=640\)

\(\Rightarrow640k^3=640\)

\(\Rightarrow k^3=1\)

\(\Rightarrow k=1\)

\(\Rightarrow x=4;y=8;z=20\)

Vậy

16 tháng 4 2018

ok K đi

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

9 tháng 10 2021

\(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).5=-20\\z=\left(-4\right).\left(-2\right)=8\end{matrix}\right.\)

24 tháng 3 2020

\(\Leftrightarrow\frac{4}{9}x^2=\frac{9}{16}y^2=\frac{25}{36}z^2\)

\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2\)

Áp dụng t/c dãy tỉ số bằng nhau ta được:\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2=\frac{900.\left(x^2+y^2+z^2\right)}{2025+1600+1296}=\frac{900.724}{4921}\)

=> x ~ 17,26; y ~ 15,34; z ~ 13,81.

3 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)

=> x = 11.6 = 66,y = 11.5 = 55

b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)

=> x = (-4).5 = -20 , y = (-4).4 = -16

c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)

=> xy = 3t.16t = 48t2

=> 48t2 = 192

=> t2 = 4

=> t = \(\pm\)2

Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32

Với t = -2 thì x = -6,y = -32

d) \(\frac{x}{-3}=\frac{y}{7}\)

=> \(\frac{x^2}{9}=\frac{y^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)

=> x2 = 9.9 = 81 => x = \(\pm\)9

y2 = 9.49 = 441 => y = \(\pm\)21

Câu e,f tương tự

3 tháng 10 2020

làm hộ mik cả câu e,f nx nhé