Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{1}{3}\div2\frac{2}{5}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{7}\)
\(\frac{25}{18}-1< x< \frac{23}{7}+\frac{5}{7}\)
\(\frac{7}{18}< x< \frac{28}{7}\)
\(\frac{49}{126}< x< \frac{504}{126}\)
\(\Rightarrow x=\left(\frac{50}{126};\frac{51}{126};\frac{52}{126};......;\frac{503}{126}\right)\)
a) Từ đề bài => x > 0 ( so với -1/5 ) và x > 7 ( so với 1/7 ) => x > 8
b) Quy đồng số 4 ta được 20/4
=> 14 < x < 20
=> x = { 15; 16; 17; 18 ; 19 }
c) Quy đồng 1/3 và 1/2 ta được : 9/27 < 9/x < 9/18
=> 27 > x > 18
=> x = { 26; 25; 24; 23; 22; 21; 20; 19 }
Vậy,..............
xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N)
A=n^2+11n+30
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là
1,2,3,5,6,10,15,30
trong đó 2,5 có dạng 3k+2 nên ta loại
vậy n là 1,3,6,10,15,30
câu 2:
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)
\(\frac{-11}{9}\le x+\frac{11}{18}\Leftrightarrow x\ge\frac{-11}{6}\)
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow\frac{-13}{9}\le x-\frac{-11}{18}\)
\(\Leftrightarrow\frac{-13}{9}\le x+\frac{11}{18}\)
\(\Rightarrow x\ge\frac{-37}{18}\)
Học tốt nhé !! ^-^
Có \(\frac{-2}{3}-\frac{5}{12}\)\(< x\le\left(-2\right)^2\)\(-\frac{1}{3}:\frac{1}{6}\)
\(\Rightarrow\frac{-8}{12}-\frac{5}{12}\)\(< x\le\)\(4-\frac{1}{3}.6\)
\(\Rightarrow\frac{-13}{12}< x\le\)\(4-2\)
\(\Rightarrow\frac{-13}{12}< x\le2\)
Vì \(x\in Z\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)