K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)

\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)

THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

PT $\Leftrightarrow 11^y=x^2-13x-23$

Nếu $x\equiv 0\pmod 3$ thì:

$x^2-13x-23\equiv -23\equiv 1\pmod 3$

Nếu $x\equiv 1\pmod 3$ thì:

$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$

Nếu $x\equiv 2\pmod 3$ thì:

$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$

Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$

$\Rightarrow (-1)^y\equiv 1\pmod 3$

$\Rightarrow y$ chẵn. Đặt $y=2t$

$11^{2t}-x^2+13x+23=0$

$(2.11^{t})^2-(2x-13)^2=-261$

$(2.11^t-2x-13)(2.11^t+2x+13)=-261$

Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.

 

 

6 tháng 12 2017

tính nhanh

15,5 x 49,8 + 31 x 24,6 + 15,5

4 tháng 12 2017

làm ơn giúp mình với mình cần gấp lắm, ai làm sớm nhất, hay nhất mình k cho

21 tháng 11 2015

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

16 tháng 12 2017

Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn

Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58

Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.

Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6

Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.

Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014

25 tháng 3 2019

\(2016^z+2017^y=2018^x\)

\(\text{TH1 : z = 0}\)

\(\Leftrightarrow2016^0+2017^y=2018^x\)

\(\Leftrightarrow1+2017^y=2018^x\)

\(\Leftrightarrow y=1;x=1\)

\(\text{TH2 : y = 0}\)

\(\Leftrightarrow2016^z+2017^0=2018^x\)

\(\Leftrightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)

\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Leftrightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)

25 tháng 3 2019

Gợi ý: 2017y là số lẻ

2016và 2018x là số chẵn trừ khi x=0 ; z=0

Mà 2018x= 2017y + 2016 

=> y=0

=> 2018x=2016z+1

Mặt khác 2018x >= 2016z

Dấu bằng xảy ra <=> x=0;z=0

Thử lại: 1 = 2 vô lí 

Vậy không có x;y;z; là số tự nhiên thỏa mãn

3 tháng 1 2020

Bài giải

Giả sử x,y thuộc N*

Suy ra 4x + 215 = 6y (x,y thuộc N*)

Mà 4x (x thuộc N*) là một số chẵn, 215 là một số lẻ và 6y (y thuộc N*) là một số chẵn nên nếu như 4x và 6y với x,y thuộc N* thì điều đó là impossible.

Ta xét: 6y có số mũ là 0 (nghĩa là 60) suy ra 6y = 60 = 1

Mà 1 < 215 + 4x (4x là số tự nhiên) nên điều đó cũng impossible

Suy ra chỉ có một trường hợp luôn đúng đó là 4x = 40 => x = 0

Thay vào, ta có:

215 + 40 = 215 + 1 = 6y

Nếu 215 + 1 = 6y thì ta có:

       216       = 6y

       63         = 6y

Suy ra y = 3

Vậy x = 0 và y = 3

16 tháng 5 2016

Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0 

16 tháng 5 2016

không có  trường hợp nào  

26 tháng 10 2016

x(x+2y)=100 nhieu uoc qua

hạ xuống đã

x phải chia hết cho 4

 x=4n

<=> n(n+y)=25=5.5=1.25=25.1

n=5=>x=20; y=0

n=1=> x=4; y=24

n=25=>x=100; y=0

16 tháng 10 2017

Ta thấy: 2xy chia hết cho 2; 100 chia hết cho 2 nên suy ra được: x2 chia hết cho 2 suy ra x chia hết cho 2

Đặt x = 2t ( t  ) thay vào ta được   

( 2t)2 + 2.(2t)y = 100

4t2   + 4ty  = 100

t2 + ty = 25

t(t+y) = 25 

mà t   t + y và 25 chia hết cho t; t + y

TH1: +) t < t + y thì

t = 1; t + y = 25

với t = 1 tìm được x = 2; y = 24   

TH2:  +) t = t + y thì y = 0

Suy ra t = 5; x = 10

Vậy: x = 2; y = 24 hoặc x = 10; y = 0