Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{3}{5}.x=\frac{2}{3}.y=k\) => \(x=\frac{5}{3}.k;y=\frac{3}{2}.k\)
=> \(x^2-y^2=\left(\frac{5k}{3}\right)^2-\left(\frac{3k}{2}\right)^2=\frac{25}{9}k^2-\frac{9}{4}k^2=\left(\frac{25}{9}-\frac{9}{4}\right)k^2=\frac{19}{36}k^2\)
=> \(\frac{19}{36}k^2=38\)=> k2 = 72 => k = \(6\sqrt{2}\) hoặc - \(6\sqrt{2}\)
k = \(6\sqrt{2}\) => x = \(10\sqrt{2}\); y = \(9\sqrt{2}\)
k = - \(6\sqrt{2}\) => x = - \(10\sqrt{2}\); y = - \(9\sqrt{2}\)
Vậy,,,
\(25-8\left(x-2016^2\right)=\left(y-1\right)^2.\)
\(Nx:\)\(8\left(x-2016\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow VT=\left(y-1\right)^2\Leftrightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\Rightarrow\left(x-2016\right)^2\le3\)
Mà \(\left(x-2016\right)^2\)là số chính phương \(\Rightarrow\orbr{\begin{cases}\left(x-2016\right)^2=1\\\left(x-2016\right)^2=0\end{cases}}\)
\(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2016=-1\Leftrightarrow x=2015\\x-2016=1\Leftrightarrow x=2017\end{cases}}\)
\(\left(x-2016\right)^2=0\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)
\(Th1\left(x=2015;x=2017\right)\)
\(25-8=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)^2=17\Leftrightarrow y-1=\sqrt{17}\Leftrightarrow y=\sqrt{17}+1\left(loại\right)\)
\(Th2\left(x=2016\right)\)
\(25-0=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)=5\Leftrightarrow y=6\)
Vậy x = 2016 và y = 6
Ta có: 25-8(x-2016)2=(y-1)2
=>y-1\(\le\)5
Xét TH:
x=2017
=>25-8(2017-2016)2=25-8=17(ko là số chính phương)
TH:x>2017 thì (y-1)2 là số âm
=>x chỉ có thể=2016
=>25-8.0=25=52
=>y-1=5=>y=5+1=6
Từ (1) và (2) suy ra x=2016;y=6
\(25-8\left(x-2016\right)^2=\left(y-1\right)^2\)
Ta thấy (y - 1)2 \(\in\) N với mọi y nên 8(x - 2016)2 \(\le\) 25 \(\Leftrightarrow\) (x - 2016)2 < 4. Mà (x - 2016)2 là số chính phương nên (x - 2016)2 = 0 hoặc (x - 2016)2 = 1. Xét 2 trường hợp:
+ TH1: \(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2015\end{cases}}\). Khi đó (y - 1)2 = 24, loại.
+ TH2: \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\). Khi đó (y - 1)2 = 25 \(\Leftrightarrow\orbr{\begin{cases}y=6\\y=-4\end{cases}}\). Loại trường hợp y = -4, ta chọn y = 6.
Vậy x = 2016, y = 6..
Tìm các số tự nhiên x y biết
25-y^2=8(x-2016)^2
Bài làm
Dêz thấy rằng 25-y^2 chia hết cho 8
=> y E {1;3;5}
+) y=1=> (x-2016)^2=3
3 không là số chính phương
+) y=3
+)y=5