Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có tích của 4 số TN liên tiếp +1 là cp
Đặt \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)+1=k^2\)
\(\Rightarrow k^2+5^y=11880\)
=> k2 chia hết cho 25
mà 11880=2376.5=> 5y chia hết cho 5y nhưng không chia hết cho 25 => y=1
tự giải tiếp tìm x nhé
Theo bất đẳng thức Bunhicốpxki ta có \(\left(x^2+4y^2\right)\left(4+1\right)\ge\left(2x+2y\right)^2=4\left(x+y\right)^2\to\left(x+y\right)^2\le\frac{5}{4}.\) Từ đây ta suy ra \(\left|x+y\right|\le\frac{\sqrt{5}}{2}\to-\frac{\sqrt{5}}{2}\le x+y\le\frac{\sqrt{5}}{2}.\)
Ta thấy \(x+y=\frac{\sqrt{5}}{2}\) khi \(x=4y=\frac{2}{\sqrt{5}}\) và \(x+y=-\frac{\sqrt{5}}{2}\) khi \(x=4y=-\frac{2}{\sqrt{5}}\) .
Do đó giá trị lớn nhất của \(D\) là \(\frac{\sqrt{5}}{2}\) và giá trị bé nhất của \(D\) là \(-\frac{\sqrt{5}}{2}.\)