K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=7\sqrt{19}\)

đặt \(\sqrt{x}=a.\sqrt{19}\);\(\sqrt{y}=a.\sqrt{19}\left(a+b=7\right)\)

Vì \(a,b\in N\)nên \(a\in\hept{ }0;1;2;3;4;5;6;7\)

xét từng TH rồi được kết quả (x;y) là (0;931),(19;684),(76;475),(171,304),(304;171),(475;76),(684;19),(931;0)

23 tháng 5 2017

\(\sqrt{833}=7\sqrt{17}\)

Cho \(\sqrt{x}=a\sqrt{17}\)và  \(\sqrt{y}=b\sqrt{17}\)với \(a+b=7\)

\(\Rightarrow a=1\)thì \(b=6\)tương tự với các kết quả khác sao cho \(a+b=7\)

\(\Rightarrow\sqrt{x}=1\sqrt{17}=\sqrt{17}\Leftrightarrow x=17\) và \(\sqrt{y}=6\sqrt{17}=\sqrt{17\cdot6^2}=\sqrt{612}\Leftrightarrow y=612\)

Làm tương tự với từng kết quả của a và b

17 tháng 8 2019

Tham khảo:

https://cunghoctot.vn/forum/topic/nghiem-nguyen-can-x-can-y-can-931

20 tháng 5 2020

Ta có : \(A^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng BĐT Cô-si cho 4 số dương,ta có ;

\(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2.x^2.y.z}{yz}}=4x\)

Tương tự : ....

\(\Rightarrow A^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)

\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi x = y = z = 4

27 tháng 5 2020

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)

Khi đó \(a^2+b^2+c^2\ge12\) ta cần tìm GTNN của  \(A=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)

Ta có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Mà \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\) ( cơ bản )

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge12-\left(a+b+c\right)\)

Chứng minh được \(a+b+c\le6\) là OKE nhưng có vẻ không ổn lắm :))

22 tháng 12 2018

\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)

Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)

\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)

... 

29 tháng 8 2021

Giá trị lớn nhất là 2/17

29 tháng 8 2021

\(\dfrac{2}{17}\)

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

19 tháng 3 2017

Dap an

91.

Ta ca y=7-x. Thay vao tinh y=4, x=3.

Thay vao bieu thuc =91

19 tháng 3 2017

\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{y}=4\\x+1+y=8\end{cases}}\)

đặt t = \(\sqrt{x+1}\); z = \(\sqrt{y}\)

\(\Rightarrow\hept{\begin{cases}t+z=4\\t^2+z^2=8\end{cases}}\)

\(\left(t+z\right)^2=t^2+2tz+z^2=8+2tz=16\Rightarrow tz=4\)

\(\Rightarrow\hept{\begin{cases}t+z=4\\t\cdot z=4\end{cases}}\Rightarrow t=z=2\)

\(\sqrt{x+1}=2\Rightarrow x=3;\sqrt{y}=2\Rightarrow y=4\)

\(\Rightarrow x^3+y^3=3^3+4^3=91\)

29 tháng 4 2019

Ta có : 

\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)

\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)

\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)

\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)

\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )