\(\frac{n+19}{n-2}\) là phân số tối giản

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Để \(\frac{n+9}{n-6}\inℕ\)

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có : Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ_{\left(15\right)}\)

\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)

Lập bảng xét các trường hợp : 

\(n-6\)\(1\)\(3\)\(5\)\(15\)
\(n\)\(7\)\(9\)\(11\)\(21\)

Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)

Để \(\frac{n+9}{n-6}\)là số nguyên 

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có :\(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)

n-6-11-335-5-1515
n5739111-921
29 tháng 1 2017

\(\frac{n+19}{n+6}=\frac{n+6+13}{n+6}=\frac{n+6}{n+6}+\frac{13}{n+6}=1+\frac{13}{n+6}\)

Để x là phân số tối giản <=> n + 6 thuộc Ư(13) = {1;13}

n + 6113
n-59

Vì n thuộc N nên n = 9

Vậy n = 9 thì x là phân số tối giản

29 tháng 1 2017

n = 9 nhA BN

4 tháng 2 2022

hahaa

29 tháng 7 2017

\(\frac{n+4}{n-4}=\frac{n-4+8}{n-4}=\frac{n-4}{n-4}+\frac{8}{n-4}=1+\frac{8}{n-4}\)

=> n-4 thuộc Ư(8) = {1,2,4,8}

Ta có bảng :

n-41248
n56812

Vậy n = {5,6,8,12}

29 tháng 7 2017

bạn giải hẳn ra giúp mình được ko

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

18 tháng 6 2020

a) \(\frac{n+9}{n-6}=\frac{n-6+15}{n-6}=1+\frac{15}{n-6}\)

Để phân số có giá trị là số tự nhiên điều kiện là: 

\(n-6\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)vì n > 6 

=> \(n\in\left\{7;9;11;21\right\}\) thỏa mãn

b) Đặt:  \(\left(n+9;n-6\right)=d\) với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow15⋮d\)=> \(d\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

Với d = 3 => \(\hept{\begin{cases}n+9⋮3\\n-6⋮3\end{cases}}\Rightarrow2\left(n+9\right)-\left(n-6\right)⋮3\Rightarrow n+24⋮3\Rightarrow n⋮3\)=> Tồn tại  số tự nhiên k để n = 3k ( k>2)

Với d = 5 => \(\hept{\begin{cases}n+9⋮5\\n-6⋮5\end{cases}}\Rightarrow2\left(n+9\right)-\left(n-6\right)⋮5\Rightarrow n+4⋮5\)=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)

Do đó để phân số trên là tốn giản 

<=> d = 1 =>  \(n\ne3k;n\ne5h-4\) với h; k là số tự nhiên lớn hơn 2

Vậy  \(n\ne3k;n\ne5h-4\) với h; k là số tự nhiên lớn hơn 2

13 tháng 5 2016

câu hỏi tương tự có đấy:

1 tháng 4 2018

De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2

Gia su n + 13 chia het n - 2 ta co:

      n + 13 \(⋮\)n - 2 

=>  ( n + 13  - ( n -2 ) \(⋮\)n - 2

=> 15 \(⋮\)n - 2

=> n - 2\(\in\)Ư(15)

=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )

Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )

1 tháng 4 2018
  • \(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
  • n-2-15-5-3-1+1+3+5+15
    n-13-3-1135717

    Vậy \(\frac{n+13}{n-2}\)là phân số tối giản

13 tháng 5 2016

Đặt \(A=\frac{n+13}{n-2}\) là phân số tối giản

\(\Rightarrow\)n+13 chia hết cho n-2(n là số tự nhiên)

Ta có:

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{n-2}{n-2}+\frac{15}{n-2}=1+\frac{15}{n-2}\)

Do đó n-2\(\in\)Ư(15)

Vậy Ư(15)là[1,3,5,15]

        Ta có bảng sau:

n-213515
n35717

Vậy n=3;5;7;17

13 tháng 5 2016

Trịnh Thành Công giải sai rồi