K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

để 12 chia hết cho n-1=> n-1 thuộc U(12)={1,2,3,4,6,12}

=> n={2,3,4,5,7,13}

để 20 chia hết cho 2n+1=> 2n+1 thuộc U(20)={1,2,4,5,10,20}

=> 2n={0,1,3,4,9,19}

=> n={0,2}

vậy ...

tk mk nha

8 tháng 8 2018

ok ban

30 tháng 10 2016

a) n=1;2;5;10.

b) n=0;1;3;4;9;20.

c) n=2;3;4;5;7;11.)

4 tháng 9 2015

12 chia hết cho 2 ; 3 ; 4 ; 6 ; 12 . vậy n = { 1 ; 2 ; 3 ; 5 ; 11 }

20 chia hết cho 2 ; 4 ; 5 ; 10 ; 20 . vậy n = { 1 ; 3 ; 4 ; 9 ; 19 }
 

11 tháng 10 2020

làm giúp mình nhé

23 tháng 10 2017

120 chia hết co n-1

=> n-1 thuộc Ư(120)

=> n-1 thuộc {1;120;2;60;3;40;4;30;5;24;6;20;8;15;10;12}

=> n thuộc {1+1 ; 120+1 ; 60+1 ; 3+1 ; 40+1 ; 4+1 ; 30+1 ; 5+1 ; 24+1 ; 6+1 ; 20+1 ; 8+1 ; 15+1 ; 10+1 ; 12+1}

=> n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

vậy n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

10 chia hết cho n

=> n thuộc Ư(10)

=> n thuộc {1;10;2;5}

vậy n thuộc {1;2;5;10}

20 chia hết cho 2n+1

=>2n+1 thuộc Ư(20)

=>2n+1 thuộc {1;20;2;10;4;5}

=>2n thuộc {1-1;20-1;2-1;10-1;4-1;5-1}

=>2n thuộc (0;19;1;9;3;4)

xét 2n=0

        n=0 : 2 =0 thuộc N(chọn)

xét 2n=19

        n=19 : 2=9,5 không thuộc N(loại)

xét 2n=1

        n=1 : 2 =0,5 không thuộc N(loại)

xét 2n=9

        n=9 : 2 =4,5 không thuộc N(loại)

xét 2n=3

        n=3 : 2 =1,5 không thuộc N(loại)

xét 2n=4

        n=4 : 2=2 thuộc N(chọn)

vậy n thuộc {0;2}

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

6 tháng 11 2019

a) 10 chia hết cho n

=> n thuộc (1;2;5;10)

vậy ........................

b) 20 chia hết cho n2+1

=> n2+1 thuộc (1;2;4;5;10;20)

=> n2 thuộc (0;1;3;4;9;19)

=> n thuộc (0;2)     (vì 1;3;9;19 ko chia hết cho 2)

vậy ................

c) 12 chia hết cho n-1

=> n-1 thuộc (1;2;3;4;6;12)

=> n thuộc (2;3;5;7;13)

vậy .............................

6 tháng 11 2019

a ) Để 10 \(⋮\)n

\(\Rightarrow\)\(\in\)Ư( 10 ) = { \(\pm\)1  ; \(\pm\)10 }

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774