K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NQ
0
DT
0
V
0
9 tháng 3 2017
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy
Đơn giản là sét số dư của n khi chia cho 3
+) Nếu n = 3k ( k thuộc N )
x^2n + x^n + 1 = x^6k + x^3k + 1 = ( x^6k - 1 ) + ( x^3k - 1 ) + 3
x^6k - 1 , x^3k - 1 :/ x^3 - 1 :/ ( x² + x + 1 )
=> x^2n + x^n + 1 chia x² + x + 1 dư 2 => Vô lý
+) n = 3k + 2
x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 )
x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1
=> n = 3k + 2 thỏa mán đề bài
làm tương tự trường hợp n = 3k + 1 cũng thỏa mãn đề bài
Vậy mọi n có dạng 3k + 2 hoặc 3k + 1 đều thỏa mãn đề bài
- - - - - - - - -
Chú ý :/ là chia hết , x^3k - 1 luôn chia hết cho x² + x + 1
n = 3k + 2 x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 đoạn này mk chưa hiểu lắm