Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số abcd chia hết cho tích ab . cd
=> số abcd chia hết cho ab và cd abcd = ab . 100 + cd abcd chia hết cho ab
=> cd chia hết cho ab
=> cd = m.ab ﴾m là chữ số do ab; cd là số có 2 chữ số﴿ abcd chia hết cho cd
=> ab. 100 chia hết cho cd
=> 100.ab = n.cd
=> 100.ab = m.n.ab
=> m.n = 100
=> m = 1; 2; 4; 5;
+﴿ m = 1
=> ab = cd : Số abcd = abab chia hết cho ab.ab
=> 101.ab chia hết cho tích ab.ab
=> 101 chia hết cho ab
=> không có số nào thỏa mãn
+﴿ m = 2
=> cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab
=> 51 chia hết cho ab
=> ab = 17
=> cd = 34
=> có số 1734
+﴿ m = 4
=> cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab
=> 26 chia hết cho ab
= > ab = 13
=> cd = 52 có Số 1352
+﴿ m = 5
=> cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab
=> 21 chia hết cho ab
=> ab = 21 => cd = 105 Loại
Vậy có 2 số thỏa mãn: 1734 và 1352
abcd + ( ab + cd ) = 4472
100ab + cd + ab + cd = 4472
101ab + 2cd = 4472
4472 = 101 x 44 + 28
=> ab = 44 , cd = 14
tk mình nha bạn, mình kp vs bạn r đấy
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
Bài 1
Ta có: \(a.b=2018^{2018}\)
\(2018\equiv2\left(md3\right)\)
\(2018^{2018}\equiv2^{2018}\left(md3\right)\)
\(2018\equiv\left(2^2\right)^{1009}=4^{1009}\)
Mà \(4\equiv1\left(md3\right)\Rightarrow4^{1009}\equiv1\left(md3\right)\)
\(\Rightarrow a.b=2018^{2018}\equiv1\left(md3\right)\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}a\equiv1\left(md3\right)\\b\equiv1\left(md3\right)\end{cases}}\\\hept{\begin{cases}a\equiv2\left(md3\right)\\b\equiv2\left(md3\right)\end{cases}}\end{cases}}\)
Khi đó:\(\orbr{\begin{cases}a+b\equiv2\left(md3\right)\\a+b\equiv1\left(md3\right)\end{cases}}\)
\(\Rightarrow a+b\)ko chia hết cho 3\(\Rightarrow a+b\)ko chia hết cho 2019
Vậy \(a+b\)ko chia hết cho 2019
Xin lỗi bạn nha ,máy mình bị liệt 1 s chữ , md là mod nha ! Hk t !