K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:
Với mọi số tự nhiên $b$ thì $6b=3.2b\vdots 3$ nên để $n=5a+6b\vdots 3$ thì $5a\vdots 3$

Mà $5\not\vdots 3$ nên điều này xảy ra khi $a\vdots 3$ 

Vậy với mọi số tự nhiên $b$ và mọi số tự nhiên $a$ sao cho $a\vdots 3$ thì $n=5a+6b\vdots 3$

11 tháng 8 2023

Tham khảo nhé:

n=5a+4b�=5�+4�

a)

Để n chia hết cho 2 thì 5a5�  22 và 4b4�  22.
mà 5a5�  22 thì a  22

còn 4b4�  22 thì luôn đúng.

Vậy để n  22 thì a  22, hay a={2k,kN}�={2�,�∈�} và bN�∈�

b)

Để n chia hết cho 5 thì 5a5�  55 và 4b4�  55.
mà 5a5�  55 thì luôn đúng

còn 4b4�  22 thì b  55.

Vậy để n  55 thì b  55, hay b={5k,kN}�={5�,�∈�} và aN�∈�

c)

Để n chia hết cho 10 thì 5a5�  1010 và 4b4�  1010.
mà 5a5�  1010 thì a  22

còn 4b4�  1010 thì b  55.

Vậy để n  1010 thì a  22 và b  55,

hay a=2k,b=5h;k,hN�=2�,�=5ℎ;�,ℎ∈�

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2k,kZ2�,�∈�

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,kZ5�,�∈�

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,kZ

11 tháng 8 2023

THAM KHẢO nhé:

n=5a+4b

=5+4

a)

Để n chia hết cho 2 thì 5a5  22 và 4b4  22.
mà 5a
5  22 thì a  22

còn 4b4  22 thì luôn đúng.

Vậy để n  22 thì a  22, hay a={2k,kN}={2,} và bN

b)

Để n chia hết cho 5 thì 5a5  55 và 4b4  55.
mà 5a
5  55 thì luôn đúng

còn 4b4  22 thì b  55.

Vậy để n  55 thì b  55, hay b={5k,kN}={5,} và aN

c)

Để n chia hết cho 10 thì 5a5  1010 và 4b4  1010.
mà 5a
5  1010 thì a  22

còn 4b4  1010 thì b  55.

Vậy để n  1010 thì a  22 và b  55,

hay a=2k,b=5h;k,hN=2,=5;,

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2k,kZ2,

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,kZ5,

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,kZ

 

27 tháng 1 2016

tich minh cho minh len thu 8 tren bang sep hang cai

27 tháng 1 2016

giải cho mình đi

1 tháng 2 2017

sorry mình ra đs rồi

3,6,9,12,...

1 tháng 12 2016

3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}

Với n + 3 = 1 => n không thuộc N (loại)

Với n + 3 = 2 => n không thuộc N (loại)

Với n + 3 = 4 => n = 1

Với n + 3 = 5 => n = 2

Với n+3 = 10 => n = 7

Với n + 3 = 20 => n = 17

1 tháng 12 2016

3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}

Với n + 3 = 1 => n không thuộc N (loại)

Với n + 3 = 2 => n không thuộc N (loại)

Với n + 3 = 4 => n = 1

Với n + 3 = 5 => n = 2

Với n+3 = 10 => n = 7

Với n + 3 = 20 => n = 17

31 tháng 1 2018

Ta có   \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5

Ư(5)={5,1,-1,-5}

\(\Rightarrow\)n={6,2,0,-4}

31 tháng 1 2018

gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6

BCNN(3,4,5,6)=60

\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)

lần lượt thử các số n.

Ta thấy n=7 thì A=418 chia hết cho 11

vậy số nhỏ nhất là 418

27 tháng 11 2019

a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)

Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)

\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)

\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;1\right\}\)

b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)

Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Hok Tốt!