Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 5 chia hết cho x + 1
=> 2x + 2 + 3 chia hết cho x + 1
=> 2(x + 1) + 3 chia hết cho x + 1
=> 3 chia hết cho x + 1
=> x + 1 thuộc Ư(3) = {1 ; -1 ; 3 ; -3}
Xét 4 trường hợp ta có :
Tự tìm x nha
b) 3x + 5 chia hết cho x - 1
=> 3x - 3 + 8 chia hết cho x - 1
=> 3(x - 1) + 8 chia hết cho x - 1
=> 8 chia hết cho x - 1
=> x - 1 thuộc Ư(8) = {1 ; -1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8}
Còn lại làm giống bài trên
a) Vì x thuộc N => 2x+5 chia chết cho x+1
=> 2.(x+1) +1 chia hết cho x+1, mà 2(x+1) chia hết cho x+1
=> 1 chia hết cho x+1 hay x+1 thuộc ước của 1, mà x là số tự nhiên
=> x+1=1 => x=0
b) Tương tự
1/x + 1/y = 1/z <=> x+y = xy/z
phải có xy chia hết cho z => tồn tại a, b nguyên dương sao cho: z = ab ; x chia hết cho a ; y chia hết cho b. đặt x/a = m ; y/b = n (m, n nguyên dương)
gọi d là UCLN (a,b) , vì z = ab => d là ước của z
đồng thời x chia hết cho a, y chia hết cho b nên d là ước chung của x và y
do có giả thiết (x,y,z) = 1 => d = 1. vậy a,b nguyên tố cùng nhau
đồng thời x, b nguyên tố cùng nhau ; y , a nguyên tố cùng nhau
ta có: x+y = xy/ab = (x/a).(y/b) = mn (*)
gọi p là một ước của m => p là ước của x từ (*) => p là ước của y mà (x,b) = 1
=> (p,b) = 1 => p là ước của y/b = n
thấy mọi ước của m đều là ước của n và ngược lại => mn = (p1.p2....pk)²
=> x+y = mn chính phương
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
dễ thấy nếu
\(a+b\text{ lẻ }\Rightarrow a.a+b.b\text{ lẻ }\Rightarrow c.c+d.d\text{ lẻ }\Rightarrow c+d\text{ lẻ}\)
thế nên \(a+b+c+d\text{ chẵn}\) mà dễ thấy a+b+c+d >2 nên nó là hợp số
tương tự cho trường hợp a+b là số chẵn thì c+d cũng chẵn
nên a+b+c+d là số chẵn lớn hơn 2, nên nó là hợp số