Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{132}{143}=\frac{12}{13}\)nên a=12.k và b=13.k với k\(\in\) N (1)
Ta có :ƯCLN(12; 13) = 1
=> ƯCLN(12k; 13k) = k
=> BCNN(12k; 13k) = 12.13k (2)
Theo đề bài thì BCNN(a; b) = 1092 (3)
Từ (1), (2) và (3)
=>12.13k = 1092
<=> 156.k = 1092
<=>k=1092:156=7
Khi đó a = 12.7 = 84 ; b = 13.7 = 91
Vậy a = 84 và b = 91
\(\frac{a}{b}=\frac{132}{143}=\frac{12}{13}\Rightarrow a=12k;b=13k\left(k\in N\right)\)
Vì (12;13) = 1 nên (12k;13k) = k
=> BCNN(a,b) = BCNN(12k,13k) = 12.13.k
Mà theo đề: BCNN(a,b)=1092
=> 12.13.k = 1092
=> k = 1092 : 12 : 13
=> k = 7
=> a = 7 . 12 = 84; b = 7 . 13 = 91
Vậy a = 84, b = 91.
+)Ta có\(\frac{1}{a}=\frac{1}{b}=\frac{2}{143}\)(1)
+)Ta lại có:b-a=2
=>b=a+2(2)
Thay (2) vào (1) được:
\(\frac{1}{a}=\frac{1}{a+2}=\frac{2}{143}\)
=>\(\frac{1.\left(a+2\right)}{a.1}=\frac{2}{143}\)
=>\(\frac{a+2}{a}=\frac{2}{143}\)
Mà a+2>a
=>\(\frac{a+2}{a}=\frac{2}{143}\)(vô lí)
=>Không tìm được a và b
Chúc bn học tốt
Hoặc bạn xem lại đề nha
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
\(\frac{a}{b}=\frac{132}{143}=\frac{12}{13}\) nên a = 12k và b = 13k với k \(\in\) N. (1)
Ta có :
ƯCLN(12; 13) = 1 \(\Rightarrow\) ƯCLN(12k; 13k) = k
\(\Rightarrow\) BCNN(12k; 13k) = 12.13k (2)
Theo đề bài thì BCNN(a; b) = 1092 (3)
Từ (1), (2) và (3) suy ra 12.13k = 1092 \(\Leftrightarrow\) 156.k = 192 \(\Leftrightarrow\) k = 7
Khi đó a = 12.7 = 84 ; b = 13.7 = 91
Vậy a = 84 và b = 91
ta rút gọn\(\frac{132}{143}=\frac{12}{13}\)
=> \(\frac{a}{b}=\frac{12}{13}=\frac{12k}{13k}\)
theo bài ra ta có :
a.b = 1092 <=> \(12k.13k=1092<=>\left(12.13\right).k=1092\)
<=> 156k = 1092
<=> k = 1092 : 156
<=> k = 7
=> \(\frac{a}{b}=\frac{12.7}{13.7}=\frac{84}{91}\)
Vậy a = 84;b = 91