Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
xong nha
Trả lời
Xem như phương trình bậc 2 ẩn x
\(x^2+y^2+5\left(xy\right)^2+60=37xy\)
\(\Leftrightarrow\left(1+5y^2\right)\cdot x^2-37xy+60+y^2=0\)
Denta=\(37^2\cdot y^2-4\cdot\left(60+y^2\right)\cdot\left(1+5y^2\right)\)
\(=-20y^4+165y^2-240=0\)
\(\Rightarrow1< y^2< \pm2\)
Với \(y=2\Rightarrow x=2\)(thỏa mãn)
Với \(y=-2\Rightarrow x=-2\)(thỏa mãn)
Vậy....
em như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
Trả lời
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
giải như sau:@_@
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
\(4\left(x^2-2xy+y^2\right)+5\left(4x^2y^2-28xy+49\right)=5\)
\(\Leftrightarrow4\left(x-y\right)^2+5\left(2xy-7\right)^2=5\)
- Nếu \(2xy-7\ne0\Rightarrow\left(2xy-7\right)^2>1\Rightarrow5\left(2xy-7\right)^2>5\)
\(\Rightarrow4\left(x-y\right)^2< 0\) (vô lý)
Vậy \(2xy-7=0\)
Mà do x, y nguyên nên \(2xy\) chẵn \(\Rightarrow2xy-7\ne0\) \(\forall x;y\in Z\)
Vậy pt ko có nghiệm nguyên
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~