Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)
vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :
\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)
\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)
vô nghiệm .
Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
y2 + 3y = x4 + x2 + 18
<=> 4y2 + 12y = 4x4 + 4x2 + 72
<=> 4y2 + 12y + 9 = 4x4 + 4x2 + 1 + 80
<=> (2y + 3)2 = (2x2 + 1)2 = 80
<=> (2x2 + 1 + 2y + 3)(2y + 3 - 2x2 - 1) = 80
<=> (2x2 + 2y + 4)(-2x2 + 2y + 2) = 80
<=> (x2 + y + 2)(-x2 + y + 1) = 20
Lập bảng xét các trường hợp
x2 + y + 2 | 1 | 20 | -20 | -1 | 4 | 5 | -5 | -4 | 2 | 10 | -2 | -10 |
-x2 + y + 1 | 20 | 1 | -1 | -20 | 5 | 4 | -4 | -5 | 10 | 2 | -10 | -2 |
x | | | \(\pm3\) | | | \(\pm3\) | | | 0 | | | 0 | ||||
y | 9 | 9 | -12 | -12 | 3 | 3 | -6 | -6 | | | | | | | | |
Vậy các cặp (x;y) thỏa mãn là (-3 ; 9) ; (3;9) ; (-3 ; -12) ; (3;-12) ; (0;3) ; (0;-6)
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!