Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ( x - 2) x ( y + 3) = -13 = (-13) x 1 = (-1) x 13
* Nếu x - 2 = -13 => x = (-13) + 2 = -11
y + 3 = 1 => y = 1-3 = -2
* Nếu x-2 = -1 => x = (-1) + 2 = 1
y + 3 = 13 => y = 13 - 3 = 10
Vậy có 2 cặp x;y x;y(-11;-2)
x;y(1;10)
Ta có \(\frac{2}{x}=\frac{x}{8}\Rightarrow2.8=x^2\Rightarrow x=4;-4\)
ta có\(\frac{2}{x}=\frac{x}{8}\Rightarrow x^2=2.8=16\Rightarrow x=4hoặc-4\)
câu 1L
a, xy+x-y+10=0
x(y+1)-y-1=9
x(y+1)-(y+1)=9
(x-1)(y+1)=9
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+1 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
y | 8 | -10 | 2 | -4 | 0 | -2 |
b, xy+3x+y=10
x(y+3)+(y+3)=13
(x+1)(y+3)=13
tiếp tục giống a
bài 2:
a, Vì |x-5| \(\ge\)0
=>A=|x-5|-100 \(\ge\) -100
Dấu "=" xảy ra khi x = 5
Vậy GTNN của A = -100 khi x=5
b, vì \(\hept{\begin{cases}\left|x+y\right|\ge0\\\left|y-10\right|\ge0\end{cases}\Rightarrow\left|x+y\right|+\left|y-10\right|\ge0\Rightarrow B=\left|x+y\right|+\left|y-10\right|+8\ge8}\)
Dấu "="xảy ra khi x=-10,y=10
Vậy GTNN của B = 8 khi x=-10,y=10
3x=4y-21
<=> x=(4y/3)-7
Thay x=1; x=2; .... x=9
Được 2 nghiệm:
x=1 <=> 8=(4y/3) <=> 24=4y <=>y=6
x=5 <=> 12=(4y/3) <=> 36=4y <=> y=9
Đáp số:
x=1 y=6
x=5 y=9
Ta có: |x|>=0(với mọi x)
|y|>=0(với mọi y)
Nên |x|+|y|>=0(với mọi x,y)
mà |x|+|y|=0
nên |x|=0;|y|=0
x=y=0
Vậy x=y=0
x+y+xy=0
<=> xy+x+y=0
<=>x(y+1)+y-1=-1
<=>x(y+1)-(y+1)=-1
<=>(x-1)(y+1)=-1
đến đây dễ rồi,bn tự giải tp nhé
\(\Leftrightarrow x+y.\left(1+x\right)=0\)
\(\Leftrightarrow1+x+y.\left(1+x\right)=0+1\)
\(\Leftrightarrow\left(1+x\right).\left(y+1\right)=1\)
mà \(x,y\in Z\Rightarrow1+x;y+1\in Z\)
Ta có: \(1=1.1=\left(-1\right).\left(-1\right)\)
\(\Rightarrow\hept{\begin{cases}1+x=1\\1+y=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}1+x=1\\1+y=1\end{cases}}\\\hept{\begin{cases}1+y=-1\\1+x=-1\end{cases}}\end{cases}}\) hoặc \(\hept{\begin{cases}1+x=-1\\1+y=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\) hoặc \(\hept{\begin{cases}x=-2\\y=-2\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(0;0\right);\left(-2;-2\right)\right\}\)