Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có ( x+2011)^2 lon hon hoac bang 0
=> (x+ 2011)^2 -2012 lon hon hoac bang -2012
=>GTNN là -2012 hay x= -2011
a: \(A=\left|x+1\right|+\left|y-2\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi x=-1 và y=2
b: \(B=\left|x-4\right|+\left|y+6\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi x=4 và y=-6
ta có \(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\left|x+1\right|+\left|y-2\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
câu b tương tự
A ,B đều là tổng của hai số không âm=> nhỏ nhất KHi các số hạng của nó bằng 0
a)x+1=0; y-2=0
x=-1 và y=2
b)x=4 và y=-6
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Hic , nãy đag làm dở ấn nhầm nút hủy ... h pk lm lại
\(A=3\left|2x-4\right|+5y^2+2019\)
Vì \(\hept{\begin{cases}3\left|2x-4\right|\ge0\\5y^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+2019=2019\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3\left|2x-4\right|=0\\5y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4=0\\y^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}}\)
Vậy với x = 2 và y = 0 thì Amin = 2019
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
C nhỏ nhất <=> x-2 lớn nhất.
Nếu x-2 <0 => C<0.
Nếu x-2 >0 => C >0.
Mà C nhỏ nhất => C <0 => x-2<0 mà x-2 lớn nhất và là số nguyên
=> x-2 = -1
=> x = 1.
Vậy để C đạt giá trih nhỏ nhất thì x = 1 và khi đó C = -5.