K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x(y-2)+3y-6=15

=>(y-2)(x+3)=15

=>\(\left(x+3;y-2\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;17\right);\left(12;3\right);\left(-4;-13\right);\left(-18;1\right);\left(0;7\right);\left(2;5\right);\left(-6;-3\right);\left(-8;-1\right)\right\}\)

13 tháng 2 2018

\(xy-x-3y=2\)

\(\Leftrightarrow\left(xy-x\right)-\left(3y-3\right)=5\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5\)

Dễ rồi tự giải tiếp nhé

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

21 tháng 3 2016

\(xy-2x-3y+1=0\)  \(\left(\text{*}\right)\)

\(\Leftrightarrow\)   \(xy-3y=2x-1\)

\(\Leftrightarrow\)  \(\left(x-3\right)y=2x-1\)

\(\Leftrightarrow\)   \(y=\frac{2x-1}{x-3}\)

\(\Leftrightarrow\)   \(y=\frac{2x-6+5}{x-3}\)

\(\Leftrightarrow\)   \(y=2+\frac{5}{x-3}\)

Vì  \(y\in Z\)  (theo giả thiết) nên  \(\frac{5}{x-3}\)  phải là số nguyên hay  \(5\)  phải chia hết cho  \(x-3\)

\(\Leftrightarrow\)  \(x-3\in\left\{-5;-1;1;5\right\}\)

Khi đó, xét  \(x-3\)  với  \(4\)  trường hợp trên, ta có:

\(\text{+) }\)  Với  \(x-3=-5\)  thì  \(x=-2\)  \(\Rightarrow\)  \(y=1\)

\(\text{+) }\)  Với  \(x-3=-1\)  thì  \(x=2\)  \(\Rightarrow\)  \(y=-3\)

\(\text{+) }\)  Với  \(x-3=1\)  thì  \(x=4\)  \(\Rightarrow\)  \(y=7\)

\(\text{+) }\)   Với  \(x-3=5\)  thì  \(x=8\)  \(\Rightarrow\)  \(y=3\)

Vây,  nghiệm nguyên của phương trình \(\left(\text{*}\right)\) là  \(\left(x;y\right)=\left\{\left(-2;1\right),\left(2;-3\right),\left(4;7\right),\left(8;3\right)\right\}\)

10 tháng 1 2017

xy + 3y - y = 6

xy + 2y      = 6

y(x + 2) = 6.Ta có bảng sau :

y-6-3-2-11236
x + 2-1-2-3-66321
x-3-4-5-8410-1

Vậy (x ; y) = (-3 ; -6) ; (-4 ; -3) ; (-5 ; -2) ; (-8 ; -1) ; (4 ; 1) ; (1 ; 2) ; (0 ; 3) ; (-1 ; 6)

10 tháng 1 2017

Ta có : xy + 3y - y = 6

<=>y(x + 3 - 1) = 6

<=> y(x + 2) = 6 

=> y và x + 2 thuộc ước của 6 là - 6 ;- 3 ;- 2 ;- 1 ;1 ;2 ;3 ;6

Nếu x + 2 = - 6 thì y = - 1 => x = - 8 thì y = - 1

       x + 2 = - 3 thì y = - 2 => x = - 5 thì y = - 2

..................... (tự liệt kê tiếp nhé)

Vậy ..............

18 tháng 8 2020

a) \(xy+3x+y=8\)

\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)

Ta xét các TH sau:

\(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)

\(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)

\(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)

\(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)

18 tháng 8 2020

a. xy + 3x + y = 8

=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11

=> ( x + 1 ) ( y + 3 ) = 11

 x + 1 y + 3 x y
 11 1 10 - 2
 1  11 0 8
 - 11 - 1 - 12 - 4
 - 1 - 11 - 2 - 14

Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )

b. Không rõ đề