Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a) Vì (x-1) 2 \(\ge0,\forall x\)
suy ra (x-1) 2 -14 \(\ge-14,\forall x\)
Vây A \(\ge-14,\forall x\)
GTNN của A = -14 khi và chỉ khi x=1
b) 6n2 +3n - 7 chia hết cho 2n+1
suy ra 3n(2n+1) - 7 chia hết cho 2n+1
Vì 3n. (2n+1) chia hết cho 2n +1
suy ra -7 chia hết cho 2n+1
suy ra 2n+1 thuộc {1;-1;7;-7}
2n thuộc {0; -2; 6; -8}
suy ra n thuộc {0; -1; 3; -4}
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a; A = \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{14}{x+2}\)
A = \(\dfrac{29}{x+2}\)
b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)
A \(\in\) Z ⇔ 29 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}
Lập bảng ta có:
\(x\) + 2 | - 29 | - 1 | 1 | 29 |
\(x\) | -31 | -3 | -1 | 27 |
Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}
Vậy \(x\) \(\in\) {-31; -3; -1; 27}
B2 :
Theo bài ra,ta có : \(x-1⋮x+6\)
\(\Rightarrow x+6-7⋮x+6\)
Mà \(x+6⋮x+6\)
\(\Rightarrow7⋮x+6\)
\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để \(x-1⋮x+6\)
b) Theo bài ra, ta có : A nhỏ nhất
\(\Rightarrow\left|3a-1\right|\)nhỏ nhất
Mà \(\left|3a-1\right|\ge0\)
\(\Rightarrow\left|3a-1\right|=0\)
\(\Rightarrow A=0-5\)
\(\Rightarrow A=-5\)
Vậy A có GTNN là -5
Theo bài ra, ta có A nhỏ nhất :
=> | 3a - 1 | nhỏ nhất
Mà 3a - 1 > 0
=> | 3a - 1 | = 0
=> 3a - 1 = 0
=> 3a = 0 + 1
=> 3a = 1
=> a = 1 : 3
Mà 1 lại không chia hết cho 3
=> \(a\in\varnothing\)
Vậy ko tìm đc GTNN của A