Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
\(x^3+3x^2+5=5^y\)
\(x^2.\left(x+3\right)+5=5^y\)
vì \(x+3=5z\)
\(x^2.5z+5=5^y\)
\(x^2.5.\left(z+1\right)=5^y\)
vì x,y,z thuộc Z khác 0
=>...
đến đây tịt r :((
Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath
Ta có:\(x^3+y^3+z^3=x+y+z+2018\) (1)
\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2018\)
Mà :\(x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\)
\(y^3-y=y\left(y^2-1\right)=y\left(y-1\right)\left(y+1\right)\)
\(z^3-z=z\left(z^2-1\right)=z\left(z-1\right)\left(z+1\right)\)
Vì x , y , z là các số nguyên:
\(\implies\) \(x\left(x-1\right)\left(x+1\right);y\left(y-1\right)\left(y+1\right);z\left(z-1\right)\left(z+1\right)\) là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3
Do đó VT(1) luôn chia hết cho 3 mà 2018 không chia hết cho 3
Vậy không có các số nguyên x , y , z nào thỏa mãn yêu cầu bài toán