Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 = y2 + y + 1
=> 4x2 = 4y2 + 4y + 4
=> (2x)2 = (2y)2 + 2.2y + 1 + 3
=> (2x)2 = (2y + 1)2 + 3
=> 3 = (2x)2 - (2y + 1)2
=> 3 = (2x - 2y - 1)(2x + 2y + 1)
Do x, y thuộc Z => 2x - 2y - 1, 2x + 2y + 1 thuộc Ư(3) = {-1; 1; -3; 3}
Ta có bảng sau:
2x - 2y - 1 | -1 | 1 | -3 | 3 |
2x + 2y + 1 | -3 | 3 | -1 | 1 |
x | -1 | 1 | -1 | 1 |
y | -1 | 0 | 0 | -1 |
b) y2 = x2 - 1 + 1 = x2
=> y2 = x2
=> y = x hoặc y = -x (với x, y thuộc Z)
c) x + 2xy + y = 83
=> 2x + 4xy + 2y = 166
=> 2x(2y + 1) + 2y = 166
=> 2x(2y + 1) + (2y + 1) = 167
=> (2y + 1)(2x + 1) = 167
Do x, y thuộc Z => 2x - 1, 2y - 1 thuộc Ư(167) = {-1; 1; -167; 167}
Ta có bảng sau:
2x - 1 | -1 | 1 | -167 | 167 |
2y - 1 | -167 | 167 | -1 | 1 |
x | 0 | 1 | -83 | 84 |
y | -83 | 84 | 0 | 1 |
a) Đặt x +y = S; xy = P => S; P nguyên
Ta có: \(x^2+y^2=\left(xy-3\right)^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(xy\right)^2-6xy+9\)
=> \(S^2-2P=P^2-6P+9\)
<=> \(S^2-\left(P-2\right)^2=5\)
<=> \(\left(S-P+2\right)\left(S+P-2\right)=5\)
TH1: \(\hept{\begin{cases}S-P+2=5\\S+P-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=3\\S+P=3\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=0\end{cases}}}\)
khi đó: \(\hept{\begin{cases}x+y=3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3;y=0\\x=0;y=3\end{cases}}\)
TH2: \(\hept{\begin{cases}S-P+2=1\\S+P-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-1\\S+P=7\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=4\end{cases}}}\)
khi đó: \(\hept{\begin{cases}x+y=3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên
TH3: \(\hept{\begin{cases}S-P+2=-5\\S+P-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-7\\S+P=1\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=4\end{cases}}}\)
khi đó: \(\hept{\begin{cases}x+y=-3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên
TH4: \(\hept{\begin{cases}S-P+2=-1\\S+P-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-3\\S+P=-3\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=0\end{cases}}}\)
Khi đó: \(\hept{\begin{cases}x+y=-3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3;y=0\\x=0;y=-3\end{cases}}\)
Vậy có 4 nghiệm nguyên ( 3; 0) ( -3: 0) ( 0; 3) ( 0; -3)
x nguyên, y nguyên
=> x+y, xy nguyên
Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1995⋮3\)
=> \(\left(x+y\right)^3⋮3\)
vì 3 là số nguyên tố
=> x+y chia hết cho 3(2)
=>\(\left(x+y\right)^3⋮9\) và 3xy(x+y) chia hết cho 9
=> 1995 chia hết cho 9 vô lí
Vậy nên không tồn tại x, y nguyên thỏa mãn
Ta có: \(x^2-y^2=2002\Leftrightarrow\left(x-y\right)\left(x+y\right)=2002\)
Vì x=\(\frac{\left(x+y\right)+\left(x-y\right)}{2}\in Z\)
=> (x+y)+(x-y) là số chẵn
TH1: x+y là số chẵn, x-y là số chẵn
=> (x+y) (x-y) chia hết cho 4
=> 2002 chia hết cho 4 vô lí
TH2: x+y là số lẻ, x-y là số lẻ
=> (x-y)(x+y) là một số lẻ
=> 2002 là số lẻ vô lí
Vậy ko tồn tại x, y thỏa mãn