K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\Leftrightarrow4xy\left(x+1\right)-4xy\left(y+1\right)+1=\left(xy\right)^3\)

\(\Leftrightarrow\left(4xy-4xy\right)\left(x+1+y+1\right)+1=\left(xy\right)^3\Rightarrow1=\left(xy\right)^3\Rightarrow xy=1\)

=> x=1;y=1

     x=-1;y=-1

Ta có: \(2x^2+2y^2-x-y-2xy+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}^2\right)=0\)

Nhận xét \(\left(x-y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}}\)

1 tháng 4 2020

Có 3x^2+y^2+2x-2y=1

=>9x^2+3y^2+6x-6y=3

=>(3x+1)^2+3(y-1)^2=7

=>3(y-1)^2 <=7

=> (y-1)^2<=7/3<2.333(3)

Mà (y-1)^2 là scp

=> (y-1)^2 thuộc 0,1

Sau đó xét 2 trg hợp và đối chiếu đk x thuộc Z

Chúc học tốt nhaaa

17 tháng 9 2018

\(a)\)\(xy-x-y=1\)

\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)

\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)

Lập bảng : 

\(x-1\)\(1\)\(2\)\(-1\)\(-2\)
\(y-1\)\(2\)\(1\)\(-2\)\(-1\)
\(x\)\(2\)\(3\)\(0\)\(-1\)
\(y\)\(3\)\(2\)\(-1\)\(0\)

Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~ 


 

17 tháng 9 2018

\(b)\)\(xy-2x-2y=1\)

\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)

\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)

\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)

Lập bảng : 

\(x-2\)\(1\)\(5\)\(-1\)\(-5\)
\(y-2\)\(5\)\(1\)\(-5\)\(-1\)
\(x\)\(3\)\(7\)\(1\)\(-3\)
\(y\)\(7\)\(3\)\(-3\)\(1\)

Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)

Chúc bạn học tốt ~ 

24 tháng 3 2019

\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)

<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)

<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên

Có 2 TH

+) Trường hợp 1

\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn

+ Trương hợp 2

\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn

VÂỵ ....