Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
A, => x+2=0 hoặc y-3=0
=> x=-2 hoặc y=3
B, => x+1=0 hoặc xy-1=0
=> x=-1 hoặc xy=1
=> x=-1 hoặc x=y=+-1
a) \(\left(x+2\right).\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b) \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
\(\left(x-2\right).\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\y=1\end{cases}}\)
Ủng hộ nha Nguyen Phuong Thao
1)(x-2)(y-1)=0
=> \(\left[{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right. \)=>\(\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy x,y\(\in\){2;1}
Vì y là số nguyên, 2y-3 lẻ
=> 2y-3 thuộc tập (1; 5; -1; -5)
kẻ bảng => (x;y)=(7;2), (-1; 4), (-13;1), (-5;-1)
(x+30)x(2y-3)=10
x+30=10;2y-3=10
x=-20;2yx13
x=20;y=6/2
\(\frac{7}{x}=\frac{y}{1}\)
\(\Leftrightarrow x\cdot y=7\)
+) \(\hept{\begin{cases}x=1\\y=7\end{cases}}\)
+) \(\hept{\begin{cases}x=-1\\y=-7\end{cases}}\)
+) \(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
+) \(\hept{\begin{cases}x=-7\\y=-1\end{cases}}\)
Vậy....
2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha